引言
随着大语言模型(LLM)技术的快速发展,如何让这些模型更好地利用外部知识成为一个重要课题。检索增强生成(RAG)作为一种结合信息检索和生成模型的技术,能够显著提升模型在知识密集型任务中的表现。本文将深入探讨LLM与RAG的结合,展示如何通过代码实现这一技术,并分析其在实际应用中的价值。
RAG的核心原理
RAG的核心思想是通过检索外部知识库中的相关信息,增强生成模型的上下文理解能力。具体来说,RAG的工作流程包括以下几个步骤:
- 数据检索:根据用户输入的查询,从知识库中检索出相关的上下文信息。
- 提示增强:将检索到的上下文信息整合到生成模型的提示中,以增强模型的生成能力。
- 答案生成:利用增强后的提示生成最终的回答。
这种技术能够有效解决传统生成模型知识更新滞后的问题,同时提高回答的准确性和相关性。
代码实现:基于LangChain的RAG应用
以下是使用LangChain实现RAG的代码示例:
第一步:数据检索
代码语言:python
代码运行次数:0
运行
AI代码解释
from langchain.vectorstores import FAISS
from langchain.embeddings import OpenAIEmbeddings
# 初始化向量数据库
vectorstore = FAISS.from_texts(
texts=["萧炎是《斗破苍穹》的主角", "萧炎的表妹是云韵"],
embedding=OpenAIEmbeddings()
)
# 定义检索器
retriever = vectorstore.as_retriever()
第二步:提示增强
代码语言:python
代码运行次数:0
运行
AI代码解释
from langchain.prompts import ChatPromptTemplate
template = """你是一个问答机器人助手,请使用以下检索到的上下文来回答问题,如果你不知道答案,就说你不知道。问题是:{question}, 上下文: {context}, 答案是:"""
prompt = ChatPromptTemplate.from_template(template)
第三步:答案生成
代码语言:python
代码运行次数:0
运行
AI代码解释
from langchain.chat_models import ChatOpenAI
from langchain.schema.runnable import RunnablePassthrough
from langchain.schema.output_parser import StrOutputParser
# 初始化LLM
llm = ChatOpenAI(model_name="gpt-3.5-turbo", temperature=0)
# 构建RAG链
rag_chain = (
{"context": retriever, "question": RunnablePassthrough()}
| prompt
| llm
| StrOutputParser()
)
# 测试查询
query = "萧炎的表妹是谁?"
result = rag_chain.invoke(query)
print(f"答案:{result}")
通过上述代码,我们可以看到RAG如何通过检索外部知识库中的信息来增强生成模型的回答能力。
实际应用场景
金融领域的智能分析助手
在金融领域,RAG可以与微调模型结合,帮助模型更好地利用最新的市场数据。例如,通过检索最新的股价和新闻,RAG可以为用户提供更准确的投资建议。
法律助手
法律行业中,RAG被广泛用于实时检索相关法条和判例,确保回答的准确性和权威性。例如,LexisNexis的LexiGPT通过RAG功能显著提高了法律问答的可信度。
总结与展望
RAG技术通过结合检索和生成模型的能力,为大语言模型在知识密集型任务中的应用提供了新的可能性。未来,随着技术的进一步发展,RAG有望在更多领域实现突破,为各行各业的知识管理和服务提供更高效、更可靠的解决方案。
如何系统的去学习大模型LLM ?
大模型时代,火爆出圈的LLM大模型让程序员们开始重新评估自己的本领。 “AI会取代那些行业
?”“谁的饭碗又将不保了?
”等问题热议不断。
事实上,抢你饭碗的不是AI,而是会利用AI的人。
继科大讯飞、阿里、华为
等巨头公司发布AI产品后,很多中小企业也陆续进场!超高年薪,挖掘AI大模型人才! 如今大厂老板们,也更倾向于会AI的人,普通程序员,还有应对的机会吗?
与其焦虑……
不如成为「掌握AI工具的技术人
」,毕竟AI时代,谁先尝试,谁就能占得先机!
但是LLM相关的内容很多,现在网上的老课程老教材关于LLM又太少。所以现在小白入门就只能靠自学,学习成本和门槛很高。
基于此,我用做产品的心态来打磨这份大模型教程,深挖痛点并持续修改了近70次后,终于把整个AI大模型的学习门槛,降到了最低!
在这个版本当中:
第一您不需要具备任何算法和数学的基础
第二不要求准备高配置的电脑
第三不必懂Python等任何编程语言
您只需要听我讲,跟着我做即可,为了让学习的道路变得更简单,这份大模型教程已经给大家整理并打包,现在将这份 LLM大模型资料
分享出来:包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程
等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓
一、LLM大模型经典书籍
AI大模型已经成为了当今科技领域的一大热点,那以下这些大模型书籍就是非常不错的学习资源。
二、640套LLM大模型报告合集
这套包含640份报告的合集,涵盖了大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(几乎涵盖所有行业)
三、LLM大模型系列视频教程
四、LLM大模型开源教程(LLaLA/Meta/chatglm/chatgpt)
五、AI产品经理大模型教程
LLM大模型学习路线 ↓
阶段1:AI大模型时代的基础理解
-
目标:了解AI大模型的基本概念、发展历程和核心原理。
-
内容:
- L1.1 人工智能简述与大模型起源
- L1.2 大模型与通用人工智能
- L1.3 GPT模型的发展历程
- L1.4 模型工程
- L1.4.1 知识大模型
- L1.4.2 生产大模型
- L1.4.3 模型工程方法论
- L1.4.4 模型工程实践
- L1.5 GPT应用案例
阶段2:AI大模型API应用开发工程
-
目标:掌握AI大模型API的使用和开发,以及相关的编程技能。
-
内容:
- L2.1 API接口
- L2.1.1 OpenAI API接口
- L2.1.2 Python接口接入
- L2.1.3 BOT工具类框架
- L2.1.4 代码示例
- L2.2 Prompt框架
- L2.3 流水线工程
- L2.4 总结与展望
阶段3:AI大模型应用架构实践
-
目标:深入理解AI大模型的应用架构,并能够进行私有化部署。
-
内容:
- L3.1 Agent模型框架
- L3.2 MetaGPT
- L3.3 ChatGLM
- L3.4 LLAMA
- L3.5 其他大模型介绍
阶段4:AI大模型私有化部署
-
目标:掌握多种AI大模型的私有化部署,包括多模态和特定领域模型。
-
内容:
- L4.1 模型私有化部署概述
- L4.2 模型私有化部署的关键技术
- L4.3 模型私有化部署的实施步骤
- L4.4 模型私有化部署的应用场景
这份 LLM大模型资料
包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程
等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓