Python可视化之pandas

本文详细介绍了在使用PythonMatplotlib库时如何解决坐标轴负号乱码和中文显示问题,以及各种图表类型如折线图、条形图、箱线图、区域面积图、散点图和饼图的创建方法和示例。
摘要由CSDN通过智能技术生成

提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档


1.解决坐标轴刻度负号乱码

import matplotlib.pyplot as plt
plt.rcParams['axes.unicode_minus']=False

2.解决中文乱码问题

# 以下方式二选一
plt.rcParams['font.sans-serif']=['Simhei']
plt.rcParams['font.sans-serif'] = ['Microsoft YaHei'] 

3.折线图Series.plot()&DataFrame.plot()

  • Series.plot():
    kind:line(折线图),bar(垂直条形图)、barh(水平条形图)、hist(直方图)、box(箱型图)、kde(核密度估计图)与density相同,area(面积图)、pie(饼图)
da = pd.Series([1,5,3,4,5,2.2,7,6.5])
da.index.name='site'
da.plot(kind='line',linestyle='-.',color='c',marker='*')

在这里插入图片描述

  • DataFrame.plot():
    kind:line(折线图,默认),bar或barh(条形图)、hist(频率柱状图)、box(箱型图)、kde(密度图,需引用scipy包)与density相同,area(区域图,不同区域面积占比)、pie(饼图)、scatter(散点图)、hexbin()
da = pd.DataFrame({'A':[3,5,3,4,5,5,7,6.5],'B':[2,6,2,1,7,2.4,6,8.3]})
da.plot(kind='line',linestyle='-',color='c',marker='o',
        xticks=[2,4,6,8,10],yticks=[2,4,6,8,10],xlim=[-1,9],title='对比折线图')

在这里插入图片描述

4.条形图

da = pd.Series([1,5,3,4,5,2.2,7,6.5])
da.index=['a','b','c','d','e','f','g','h']
da.index.name='site'
da.plot(kind='bar',fontsize=12)

在这里插入图片描述

da = pd.DataFrame({'A':[3,5,3,4,5,5,7,6.5],'B':[2,6,2,1,7,2.4,6,8.3]})
da.index=['a','b','c','d','e','f','g','h']
da.index.name='site'
da.plot(kind='bar',fontsize=12)

在这里插入图片描述
直方图是一种可以对值频率进行离散化显示的柱状图。数据点被拆分到离散的、间隔均匀的面元中,绘制的是各面元中数据点的数量,bins=20表示数值分辨率,具体来说是将随机数设定一个范围

a = np.random.randn(100)

df = pd.DataFrame({'length':a})
df.plot.hist(bins=20)

在这里插入图片描述

df = pd.DataFrame({'a':np.random.randn(100)+1,'b':np.random.randn(100),'c':np.random.randn(100)-1},
                  index=range(1,101),columns=['a','b','c'])

df.plot.hist()

在这里插入图片描述
在这里插入图片描述
下图是对数值进行累加,并绘制横向直方图,横轴表示频率,cumulative=True表示将频率从大到小排列
在这里插入图片描述
在这里插入图片描述
df.diff().hist()的效果是将DataFrame当中column分开,即将a,b,c分开绘制成三张图,df.diff().hist()可达到这个效果
在这里插入图片描述

5.箱线图

线条从上到下分布表示:最小值,第一四分位、中位数、第三四分和最大值

  • 绘制方法:
    Series.plot.box()
    DataFrame.boxplot()
    DataFrame.plot.box()
  • 参数:
    boxes:盒身
    whiskers:盒须
    medians:中位数
    caps:最大值,最小值
    在这里插入图片描述
df.plot.box(color=dict(boxes='c',whiskers='r',medians='b',caps='g'),sym='r+')  #sym设置极端值样式

在这里插入图片描述
水平箱线图
在这里插入图片描述

6.区域面积图(堆积折线图)

np.random.seed(80)
a=np.random.rand(10,5)

df = pd.DataFrame(a,columns=['a','b','c','d','e'])

df.plot.area()#生成堆积图

在这里插入图片描述
在这里插入图片描述

7.散点图

np.random.seed(80)
a=np.random.rand(10,5)

df = pd.DataFrame(a,columns=['a','b','c','d','e'])

df.plot.scatter(x='b',y='a')

在这里插入图片描述
图形嵌套
在这里插入图片描述

8.饼图

Series.plot.pie()
DataFrame.plot.pie()

np.random.seed(80)

df = pd.Series(np.random.rand(5),index=['a','b','c','d','e'],name='series')
df.plot.pie(figsize=(6,6))

在这里插入图片描述

np.random.seed(80)

df = pd.DataFrame(np.random.rand(5,2),index=['a','b','c','d','e'],columns=['x','y'])
df.plot.pie(subplots=True, figsize=(12,6))

在这里插入图片描述

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值