仿小红书推荐算法(社区互动模型)


一、小红书推荐系统核心算法

  1. 协同过滤算法(核心)

    • 用户协同过滤:通过计算用户相似度推荐相似用户喜欢的商品
    • 物品协同过滤:通过物品相似度矩阵推荐相关物品
    • 代码示例中的余弦相似度计算:
      public double cosineSimilarity(Map<Long, Double> user1, Map<Long, Double> user2) {
             
          double dotProduct = 0.0, norm1 = 0.0, norm2 = 0.0;
          for (Long itemId : user1.keySet()) {
             
              if (user2.containsKey(itemId)) {
             
                  dotProduct += user1.get(itemId) * user2.get(itemId);
              }
              norm1 += Math.pow(user1.get(itemId), 2);
          }
          for (Double rating : user2.values()) {
             
              norm2 += Math.pow(rating, 2);
          }
          return dotProduct / (Math.sqrt(norm1) * Math.sqrt(norm2));
      }
      
  2. CES评分算法(社区参与度)

    • 计算公式:CES = 点赞*1 + 收藏*1 + 评论*4 + 转发*4 + 关注*8 (权重公式来源于:新浪财经)
    • 实现逻辑:
      public class CESCalculator {
             
          public double computeCES(Interaction interaction) {
             
              return interaction.getLikes() * 1 + 
                     interaction
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

立志成为好青年

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值