非周期信号的频域抽样

如果一个非周期信号在频域被一序列的冲击函数抽样,那么对于时域会有什么样的变化呢。

定义频域抽样序列单位冲击函数为:\delta_s(\omega)=\sum_{n=-\infty}^{\infty}\delta(\omega - n\omega_0)

因为\delta(\omega)对应的时域函数为\frac{1}{2\pi},所以根据频移特性可以知道\delta_s(\omega)对应的时域函数为\sum_{n=-\infty}^{\infty}\frac{1}{2\pi}e^{jn\omega_0t}

经过对比周期信号的傅里叶级数公式f(t)=\sum_{n=-\infty}^{\infty}F_ne^{jnw0t},发现\sum_{n=-\infty}^{\infty}\frac{1}{2\pi}e^{jn\omega_0t}正是某周期为T_0=\frac{2\pi}{\omega_0}的周期函数g(t)的级数指数形式。它的系数为F_n=\frac{1}{2\pi}=\frac{1}{T_0}\int_{-\frac{T0}{2}}^{\frac{T0}{2}}g(t)e^{-jnw_0t}dt

所以\frac{T_0}{2\pi}=\int_{-\frac{T0}{2}}^{\frac{T0}{2}}g(t)e^{-jnw_0t}dt=\frac{T_0}{2\pi}\int_{-\frac{T0}{2}}^{\frac{T0}{2}}\delta(t)e^{-jnw_0t}dt

因此可以知道g(t)是\frac{T_0}{2\pi}\delta(t)的周期函数,周期为T_0,记为\delta_s(t)=\frac{T_0}{2\pi}\sum_{n=-\infty}^{\infty}\delta(t-nT0)


根据时域卷积定理可以知道如下:

f_s(t)=f(t)*\delta_s(t)=\frac{T_0}{2\pi}f(t)*\sum_{n=-\infty}^{\infty}\delta(t-nT_0)=\frac{T_0}{2\pi}\sum_{n=-\infty}^{\infty}f(t-nT_0)

结论:非周期信号在频域抽样之后,时域会变的周期化,幅度变为原来的\frac{1}{\omega_0}=\frac{T0}{2\pi}倍。我们知道周期信号的频域也是离散的,所以频域的离散化和时域的周期化遥相呼应。


假定原始信号的时间宽度为(-T_a,+T_a),那么T_0\geq 2T_a才不会产生时域混叠效应,即\omega_0\leqslant \frac{\pi}{T_a}

如何从抽样信号里面无失真恢复原始信号呢?

       使用矩形信号在时域选通抽样信号就可以无失真恢复原始信号。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值