【sklearn机器学习】决策树

模块sklearn.tree

tree.DecisionTreeClassifier 分类树
tree.DecisionTreeRegressor 回归树
tree.export_graphviz 将生成的决策树导出为DOT格式,画图专用
from sklearn import tree                           #导入需要的模块
clf = tree.DecisionTreeClassifier()                #实例化
clf = clf.fit(X_train,y_train)                     #用训练集数据训练模型
result = clf.score(X_test,y_test)                  #导入测试集,从接口中调用需要的信息

分类树DecisionTreeClassifier

class sklearn.tree.DecisionTreeClassifier (criterion=’gini’, splitter=’best’, max_depth=None, min_samples_split=2, min_samples_leaf=1,
                                         min_weight_fraction_leaf=0.0, max_features=None, random_state=None,
                                         max_leaf_nodes=None, min_impurity_decrease=0.0,
                                         min_impurity_split=None, class_weight=None, presort=False)

参数解释

criterion=

1)输入”entropy“,使用信息熵(Entropy)
2)输入”gini“,使用基尼系数(Gini Impurity)

通常就使用基尼系数
数据维度很大,噪音很大时使用基尼系数
维度低,数据比较清晰的时候,信息熵和基尼系数没区别
当决策树的拟合程度不够的时候,使用信息熵
两个都试试,不好就换另外一个

random_state=

用来设置分枝中的随机模式的参数,默认None

splitter=

也是用来控制决策树中的随机选项的,有两种输入值

输入”best",决策树在分枝时虽然随机,但是还是会优先选择更重要的特征进行分枝(重要性可以通过属性feature_importances_查看),输入“random",决策树在分枝时会更加随机,树会因为含有更多的不必要信息而更深更大,并因这些不必要信息而降低对训练集的拟合。这也是防止过拟合的一种方式。当你预测到你的模型会过拟合,用这两个参数来帮助你降低树建成之后过拟合的可能性。当然,树一旦建成,我们依然是使用剪枝参数来防止过拟合

max_depth=

限制树的最大深度,超过设定深度的树枝全部剪掉,建议从=3开始尝试

min_samples_leaf=

一个节点在分枝后的每个子节点都必须包含至少min_samples_leaf个训练样本,否则分枝就不会发生

一般搭配max_depth使用,在回归树中有神奇的效果,可以让模型变得更加平滑。这个参数的数量设置得太小会引起过拟合,设置得太大就会阻止模型学习数据。一般来说,建议从=5开始使用。如果叶节点中含有的样本量变化很大,建议输入浮点数作为样本量的百分比来使用。同时,这个参数可以保证每个叶子的最小尺寸,可以在回归问题中避免低方差,过拟合的叶子节点出现。对于类别不多的分类问题,=1通常就是最佳选择

min_samples_split=

一个节点必须要包含至少min_samples_split个训练样本,这个节点才允许被分枝,否则分枝就不会发生

max_features=

限制分枝时考虑的特征个数,超过限制个数的特征都会被舍弃。

max_features是用来限制高维度数据的过拟合的剪枝参数,但其方法比较暴力,是直接限制可以使用的特征数量
而强行使决策树停下的参数,在不知道决策树中的各个特征的重要性的情况下,强行设定这个参数可能会导致模型
学习不足。如果希望通过降维的方式防止过拟合,建议使用PCA,ICA或者特征选择模块中的降维算法。

min_impurity_decrease=

限制信息增益的大小,信息增益小于设定数值的分枝不会发生

class_weight=

对样本标签进行一定的均衡,给少量的标签更多的权重,让模型更偏向少数类,向捕获少数类的方向建模。该参数默认None,此模式表示自动给与数据集中的所有标签相同的权重。

min_weight_fraction_leaf=

重要属性和接口

所有接口中要求输入X_train和X_test的部分,输入的特征矩阵必须至少是一个二维矩阵。
sklearn不接受任何一维矩阵作为特征矩阵被输入。如果你的数据的确只有一个特征,那必须用reshape(-1,1)来给
矩阵增维;

apply返回每个测试样本所在的叶子节点的索引

clf.apply(Xtest)

predict返回每个测试样本的分类/回归结果

clf.predict(Xtest)

在这里插入图片描述

总结

八个参数

Criterion
两个随机性相关的参数(random_state,splitter)
五个剪枝参数(max_depth,min_samples_split,min_samples_leaf,max_feature,min_impurity_decrease)
一个属性:feature_importances_
四个接口:fit,score,apply,predict

回归决策树

class sklearn.tree.DecisionTreeRegressor (criterion=’mse’, splitter=’best’, max_depth=None,
min_samples_split=2, min_samples_leaf=1, min_weight_fraction_leaf=0.0, max_features=None,
random_state=None, max_leaf_nodes=None, min_impurity_decrease=0.0, min_impurity_split=None, presort=False)

几乎所有参数,属性及接口都和分类树一模一样。需要注意的是,在回归树种,没有标签分布是否均衡的问题,因此没有class_weight这样的参数

重要参数,属性及接口

criterion=

1)输入"mse"使用均方误差mean squared error(MSE),父节点和叶子节点之间的均方误差的差额将被用来作为特征选择的标准,这种方法通过使用叶子节点的均值来最小化L2损失
2)输入“friedman_mse”使用费尔德曼均方误差,这种指标使用弗里德曼针对潜在分枝中的问题改进后的均方误差
3)输入"mae"使用绝对平均误差MAE(mean absolute error),这种指标使用叶节点的中值来最小化L1损失属性中最重要的依然是feature_importances_,接口依然是apply, fit, predict, score最核心

回归树的接口score返回的是R平方,并不是MSE

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值