【sklearn机器学习】朴素贝叶斯

sklearn中的朴素贝叶斯

Sklearn基于这些分布以及这些分布上的概率估计的改进,为我们提供了四个朴素贝叶斯的分类器。
在这里插入图片描述

高斯朴素贝叶斯GaussianNB

class sklearn.naive_bayes.GaussianNB(*, priors=None, var_smoothing=1e-09)

在这里插入图片描述

参数含义
prior可输入任何类数组结构,形状为(n_classes,)表示类的先验概率。如果指定,则不根据数据调整先验,如果不指定,则自行根据数据计算先验概率
var_smoothing浮点数,可不填(默认值= 1e-9)在估计方差时,为了追求估计的稳定性,将所有特征的方差中最大的方差以某个比例添加到估计的方差中。这个比例,由var_smoothing参数控制

概率类模型的评估指标

布里尔分数Brier Score

在这里插入图片描述

对数似然函数Log Loss

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值