codeforces 552E Vanya and Brackets(暴力)

题目链接:codeforces.com/contest/552/problem/E

题意:

给出一串式子,添加一队小括号,使得最终值最大,并输出最大值,式子里只包含1~9这9个数


解题思路:

括号可以添加在任意位置,然而‘(’放在‘+’前面以及‘)’放在‘+’前面是没有意义的,数值不会变

所以‘(’放‘*’后面,‘)’放‘*’前面

式子最长就只有5000,乘号最多就只有15个,所以不用考虑超时问题

用数组记录‘*’前面一个数的位置,以及‘*’后面一个数的位置

括号的位置一个一个假设过去


#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
#include <string>
#include <stack>
using namespace std;
#define ll __int64
char str[5005];
int a[50];
int len;
ll init(int l,int r)
{
	ll tmp=1;
	ll ans=0;
	for(int i=l;i<=r;i++)
	{
		if(isdigit(str[i]))
		{
			tmp*=(ll)str[i]-'0';
		}
		if(str[i]=='+')
		{
			ans+=tmp;
			tmp=1;
		}
	}
	ans+=tmp;
	tmp=1;
	ll sum=0;
	for(int i=1;i<=len;i++)
	{
		if(i==l)
		{
			tmp*=ans;
			i=r;
		}
		else
		{
			if(isdigit(str[i]))
			{
				tmp*=(ll)str[i]-'0';
			}
			if(str[i]=='+')
			{
				sum+=tmp;
				tmp=1;
			}
		}	
	}
	sum+=tmp;
	return sum;
}
int main()
{
	scanf("%s",str+1);
	len = strlen(str+1);
	memset(a,0,sizeof(a));
	int l = 1;
	a[l]=1;
	for(int i=1;i<=len;i++)
	{
		if(str[i]=='*')
		{
			l++;
			a[l] = i-1;
			l++;
			a[l] = i+1;
		}
	}
	if(a[l]!=len) 
	{
		l++;
		a[l] = len;
	}
	ll sum=0;
	for(int i=1;i<=l;i++)
	{
		for(int j=i;j<=l;j++)
		{
			sum = max(sum,(ll)init(a[i],a[j]));
		}
	}
	printf("%I64d\n",sum);
	return 0;
}



### Codeforces 887E Problem Solution and Discussion The problem **887E - The Great Game** on Codeforces involves a strategic game between two players who take turns to perform operations under specific rules. To tackle this challenge effectively, understanding both dynamic programming (DP) techniques and bitwise manipulation is crucial. #### Dynamic Programming Approach One effective method to approach this problem utilizes DP with memoization. By defining `dp[i][j]` as the optimal result when starting from state `(i,j)` where `i` represents current position and `j` indicates some status flag related to previous moves: ```cpp #include <bits/stdc++.h> using namespace std; const int MAXN = ...; // Define based on constraints int dp[MAXN][2]; // Function to calculate minimum steps using top-down DP int minSteps(int pos, bool prevMoveType) { if (pos >= N) return 0; if (dp[pos][prevMoveType] != -1) return dp[pos][prevMoveType]; int res = INT_MAX; // Try all possible next positions and update 'res' for (...) { /* Logic here */ } dp[pos][prevMoveType] = res; return res; } ``` This code snippet outlines how one might structure a solution involving recursive calls combined with caching results through an array named `dp`. #### Bitwise Operations Insight Another critical aspect lies within efficiently handling large integers via bitwise operators instead of arithmetic ones whenever applicable. This optimization can significantly reduce computation time especially given tight limits often found in competitive coding challenges like those hosted by platforms such as Codeforces[^1]. For detailed discussions about similar problems or more insights into solving strategies specifically tailored towards contest preparation, visiting forums dedicated to algorithmic contests would be beneficial. Websites associated directly with Codeforces offer rich resources including editorials written after each round which provide comprehensive explanations alongside alternative approaches taken by successful contestants during live events. --related questions-- 1. What are common pitfalls encountered while implementing dynamic programming solutions? 2. How does bit manipulation improve performance in algorithms dealing with integer values? 3. Can you recommend any online communities focused on discussing competitive programming tactics? 4. Are there particular patterns that frequently appear across different levels of difficulty within Codeforces contests?
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值