Pytorch 快速参数权重初始化

使用Xavier分布初始化2D卷积神经网络权重,
本文介绍了一个用于初始化2D卷积层权重的函数,使用Xavier分布,并在Residual网络实例中应用此初始化。

定义一个函数:

这里比如要初始化2维卷积权重值,采用xaiver 数据分布,还有很多其他的数据分布可以探索

def weights_init(m):
    if isinstance(m, nn.Conv2d):
        xavier(m.weight.data)
        xavier(m.bias.data)

然后定义一个含2维卷积的网络,并对该网络中的2维卷积层权重进行初始化操作。

net = Residual() # generate an instance network from the Net class
net.apply(weights_init) # apply weight init

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

医学信号图像玩家

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值