daydayjump
码龄7年
关注
提问 私信
  • 博客:321,952
    321,952
    总访问量
  • 38
    原创
  • 1,333,513
    排名
  • 103
    粉丝
  • 0
    铁粉

个人简介:计算机小白,正奔跑在学习的路上。

IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:山东省
  • 加入CSDN时间: 2017-10-10
博客简介:

daydayjump的博客

博客描述:
记录深度学习的每一步,真正消化吸收。
查看详细资料
个人成就
  • 获得234次点赞
  • 内容获得66次评论
  • 获得876次收藏
  • 代码片获得450次分享
创作历程
  • 17篇
    2019年
  • 17篇
    2018年
  • 4篇
    2017年
成就勋章
TA的专栏
  • python学习
    13篇
  • caffe2学习
    1篇
  • Ubuntu操作学习
    7篇
  • pytorch学习与使用
    6篇
  • 每周论文笔记
    7篇
  • 深度学习成长之路
    2篇
  • 强化学习
  • 深度强化学习
    1篇
  • 杂事集
    1篇
创作活动更多

AI大模型如何赋能电商行业,引领变革?

如何使用AI技术实现购物推荐、会员分类、商品定价等方面的创新应用?如何运用AI技术提高电商平台的销售效率和用户体验呢?欢迎分享您的看法

175人参与 去创作
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

jupyter notebook 使用记录(更改文件存放位置和安装Nbextensions)

注明:以下记录的都是在windows环境进行的操作。(但其实好像差不太多)1、更改文件存放位置一开始刚打开jupyter notebook的时候,起始位置是在C盘的用户里面,所以files下面有好多文件,而且文件存放查找也不方便,所以需要进行修改。(1) 创建配置文件在cmd中输入:jupyter notebook --generate-config一般第一次操作会创建配...
原创
发布博客 2019.07.13 ·
1620 阅读 ·
1 点赞 ·
1 评论 ·
4 收藏

深度强化学习(二)强化学习算法的分类

对于强化学习的分类,主要参考了莫烦大佬的视频和OpenAI的Spinning Up的介绍。一、Model-Free和Model-Based两大类上图是Spinning Up中的分类图。对于model的理解就是强化学习中的环境。根据是否去学习环境来进行分类。根据转移概率是否已知进行分类的。Model-free就是不去学习和理解环境,环境给出什么信息就是什么信息,常见的方法有polic...
原创
发布博客 2019.06.17 ·
31066 阅读 ·
24 点赞 ·
5 评论 ·
167 收藏

论文笔记(七)Learning from Longitudinal Face Demonstration - Where Tractable Deep Modeling Meets Inverse

这篇文章是关于逆强化学习的应用,主要是实现了人脸的老化,是最近发表在arxiv上的文章。论文地址本文主要是对这篇文章阅读过程的笔记。一、论文笔记0 摘要:(1)本文提出的方法为Subject-dependent Deep Aging Path(SDAP),依赖目标的深度老化方法,结合了产生式模型和逆强化学习模型的优点。该模型能生成面部的结构并给出该目标纵向的老化过程。 lon...
原创
发布博客 2019.06.12 ·
515 阅读 ·
2 点赞 ·
0 评论 ·
3 收藏

Word2016自带墨迹公式转换成mathtype公式类型

最近投论文的时候,公式一直都是用的office word2016自带的墨迹公式来编辑,感觉也挺方便的。但是投的刊物要求要用mathtype公式编辑,没有办法之后将之前写的公式进行转换。mathtype我是直接从官网购买了正版,现在是398一年。购买之后可以直接下载安装包,进行安装。安装好之后再打开word就已经出现了MathType插件,没有出现什么问题。注意从官网购买的MathType注...
原创
发布博客 2019.05.22 ·
14230 阅读 ·
6 点赞 ·
0 评论 ·
25 收藏

深度强化学习(一) 强化学习基本概念(马尔科夫决策过程)

最近需要做深度强化学习方面的内容,所以对这部分内容进行一下记录。以下是参考的资料:强化学习入门 量子位公众号对一篇博客的翻译,强化学习入门很不错。Deep Reinforcement Learning: An Overview 一篇关于深度强化学习的综述文章,机器之心公众号有对其的翻译,可以看一下。知乎--强化学习怎么入门好? 知乎上有详细的专栏介绍。OpenAI 深度强...
原创
发布博客 2019.05.14 ·
3147 阅读 ·
2 点赞 ·
0 评论 ·
18 收藏

pytorch使用记录(六) 明确使用哪块GPU

可以用在多GPU的服务器上,明确使用的是哪块GPU,可以将信息打印出来,返回的是device的列表。具体用到的pytorch函数是torch.cuda.device_count(),返回可得到的GPU数量。接下来是具体函数代码,分为两部分,一个主函数get_proper_device明确使用GPU还是CPU,另外一个函数get_proper_cuda_device是明确具体使用哪块GPU。...
原创
发布博客 2019.05.09 ·
3537 阅读 ·
3 点赞 ·
0 评论 ·
4 收藏

Python学习 正则表达式简要了解

正则表达式(regular expression) 是一种字符串匹配模式,通过特定的语法来检验一个字符串是否与某种模式匹配。正则表达式是一种功能十分强大的匹配模式,表达式形式特别丰富,但正因如此,所以觉得学起来比较困难。个人觉得就是数学表达式如大于、不等于这种表达式的升级版。目前python有re模块,保证了全部的正则表达式功能。很容易看出,re就是正则表达式英文名字的缩写。首先,了解...
原创
发布博客 2019.04.27 ·
187 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

Python学习 对象属性进行操作的函数(hasattr()、getattr()、setattr())

这次是介绍对一个对象属性进行操作的函数,是在看神经网络代码判断是否有指定层时发现的函数。主要有两大部分一是函数介绍,二是对python的类和对象的介绍。一、函数介绍首先定义一个类:>>> class test():... A = 100... def run(self):... print("daydayjump")...
原创
发布博客 2019.04.27 ·
294 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

Python学习 从低维数组到多维数组切片

python的切片操作十分简洁,但是自己遇到的问题是在切片操作发现省略号,经过查询原来是高维数组切片操作。现在进行一下记录。首先,第一个问题是python中的列表list和numpy中的array的关系。二者是不同的。虽然都可以构建数组进行切片操作,但是二者是两回事,可以互相转换。list是python内置的集合类型,与tuple元组、dictionary字典同属三大集合类型。list可以...
原创
发布博客 2019.04.26 ·
688 阅读 ·
0 点赞 ·
1 评论 ·
5 收藏

pytorch使用记录(五) 关于tensor、PIL以及numpy转换的问题

最近在运行程序的时候一直出现如下错误: File "/home/daydayjump/Glow/glow/trainer.py", line 172, in train self.writer.add_image("1_prob/{}".format(bi), plot_prob([y_pred[bi], y_true[bi]], ["pred", "true"]).cuda()....
原创
发布博客 2019.03.26 ·
6846 阅读 ·
6 点赞 ·
3 评论 ·
28 收藏

Ubuntu操作学习(三) 服务器安装不同cuda版本

因为目前服务器安装的是cuda9.0版本, 其他人还需要使用。自己想要跑tf2.0需要对应cuda10.0以上版本。所以想要新建一个用户安装不同的cuda版本。首先是在root用户下新建一个用户,然后设置管理员权限。具体如下:(1)新建用户。su # 进入root管理员权限adduser <username> # 设置用户名称之后会让填密码等信息,一直...
原创
发布博客 2019.03.16 ·
2766 阅读 ·
1 点赞 ·
1 评论 ·
10 收藏

Ubuntu操作学习(二) conda和pip换源

最近在重新配置服务器,在下载pytorch和tensorflow时发现下载速度太慢,于是决定换源加快下载速度。直接写过如何用豆瓣源给pip加速,但只是临时的,这次决定总结一下永久换源,省去每次都要输源地址的麻烦。anaconda换源自己选择的是换成清华源。步骤如下:(1)编辑 ~/.condarc 文件。vi ~/.condarc(2)添加源。channels: ...
原创
发布博客 2019.03.14 ·
11132 阅读 ·
8 点赞 ·
5 评论 ·
24 收藏

Python学习 不错的代码片段

记录一下自己在写代码时发现的不错的代码,方便以后使用。1、方便记录时间的代码,每次保存的文件名中加上保存的时间。import datetimedate = str(datetime.datetime.now()) # 通过str()得到'2019-03-05 16:06:02.312947'date = date[:date.rfind(":")].replace("-", "")...
原创
发布博客 2019.03.14 ·
141 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

Python学习 copy模块

本文主要记录对于copy的理解。一开始感觉比较难懂,但是仔细想想就能想通。一共有三种情况:1、赋值,形如“b= a”,a和b指向同一个对象,无论是a或者b修改,二者都会变化。2、浅拷贝,形如“b = copy.copy(a)” 或者“b = a.copy()”,对于b只是复制了a的父对象,但还是指向同一子对象。具体而言,父对象怎么修改都不会变,如果子对象修改就会改变。什么是子对象...
原创
发布博客 2019.03.06 ·
308 阅读 ·
1 点赞 ·
0 评论 ·
1 收藏

深度学习成长之路(二)学习率(learning rate)的知识汇总

首先是找到的三篇不错的博客,看完收获很多。链接如下:机器之心 学习速率设置指南简书 batchsize和lr的笔记雷锋网 抛弃learning rate decay学习率(learning rate)属于调参过程的一部分,目前常见的是通过设置schedule,根据特定的规则更新学习率。常用的方式就是learning rate decay。当然在最近提出了增大batchsize来保持...
原创
发布博客 2019.03.06 ·
5295 阅读 ·
3 点赞 ·
0 评论 ·
18 收藏

Python学习 各种模块函数简介(docopt、assert、split、splitext、walk、listdir、strip)

1、docopt模块,解析命令行参数的工具,方便在运行python程序时添加参数。"""introductionUsage:xxx.py <参数> ARGUMENT Options:-o FILE # 短命令选项--params=K K is params [default: 10] # 长命令选项-i <参数> input [d...
原创
发布博客 2019.03.04 ·
1111 阅读 ·
0 点赞 ·
0 评论 ·
7 收藏

论文笔记(六)【Glow: Generative Flow with Invertible 1 x 1 Convolutions】

论文地址:glow终于开始总结流模型的最终成熟版--glow。数学原理跟NICE和RealNVP基本一致,主要是在网络模型上进行了优化。一、论文概述1、摘要部分指出了流模型吸引人的地方,对对数似然精确的计算和潜在变量精确的推断,以及训练和合成的并行性。glow模型在之前流模型的基础上采用了可逆的1 x 1卷积核对输入数据进行打乱,简化了网络模型。2、在背景知识介绍上,主要介绍了流模...
原创
发布博客 2019.02.26 ·
4827 阅读 ·
4 点赞 ·
0 评论 ·
18 收藏

论文笔记(五)【DENSITY ESTIMATION USING REAL NVP】

本文主要针对流模型中的RealNVP模型论文进行记录。论文地址:DENSITY ESTIMSTION USING REAL NVP非常不错的博客:苏剑林. (2018, Aug 26). 《细水长flow之RealNVP与Glow:流模型的传承与升华 》[Blog post]. Retrieved from https://kexue.fm/archives/5807一、论文概述摘...
原创
发布博客 2018.12.20 ·
5415 阅读 ·
5 点赞 ·
0 评论 ·
16 收藏

pytorch使用记录(四)1.0版本安装时问题记录

       pytorch的更新速度还是很快的,现在已经出现了1.0版本,提供了C++接口。而且还有许多性能的更新,大有赶超TF的趋势。现在十分庆幸当初选择使用pytorch神经网络框架。 本文主要是记录安装过程中的一个问题。因为之前已经安装了pytorch 0.4.1,所以这次算是升级。直接在anaconda上输入命令conda install pytorch torchvision...
原创
发布博客 2018.12.11 ·
5045 阅读 ·
3 点赞 ·
4 评论 ·
0 收藏

论文笔记(四) 【NICE: Non-liner Independent Components Estimation】glow系列

论文地址:NICE模型    现在打算紧跟生成模型的步伐,看一下最近火起来的流模型,根据Paper_weekly的文章找到了glow模型最原始的论文,NICE模型。本文主要是该篇论文的笔记。一、论文概述 摘要部分:1、NICE全称为Non-linear Independent Component Estimation ,可以翻译为非线性独立分量估计。2、在本文中,我们需要学得一...
原创
发布博客 2018.11.14 ·
4084 阅读 ·
12 点赞 ·
2 评论 ·
32 收藏
加载更多