回归问题总结
一元回归
通俗地讲,一元回归就是用一个表达是来拟合出一个最贴切的y关于x的函数。
一元线性回归
x=[1 2 3 4];
y=[2 4 6 9];
%这是x、y的初始值
Lxx=sum((x-mean(x)).^2);
Lxy=sum((x-mean(x)).*(y-mean(y)));
b1=Lxy/Lxx;
b0=mean(y)-b1*mean(x);
y1=b1*x+b0;
%最后拟合出来的曲线为y=b1*x+b0
一元非线性回归
指数形式非线性回归
x=[1 2 3 4];
y=[2 4 6 9];
m='y~b1*x^b2';
nonlinfit=fitnlm(x,y,m,[1;1])
b1=nonlinfit.Coefficients.Estimate(1,1);
b2=nonlinfit.Coefficients.Estimate(2,1);
Y=b1*x.^b2;
多项式形式非线性回归
% 这里的3表示多项式的最高项为3次
p=polyfit(x,y,3);
% p中存储了各项的系数
Y=polyval(p,x);