一、KMP算法思想:定义两个整形变量 i、j,i 在源串的起始位置,j 在子串的起始位置,然后i、j同时开始向后走,如果i、j对应的值匹配就都++,如果不匹配,则 i 不动,j回退到k位置,这个k是存在next数组里的值,稍后说next数组
二、举例计算:
(1)我们知道 1 和 2 相等,1 和 3 相等,则可以推断得到 2 和 3 相等,所以就有P0...Pk-1 = Px...Pj-1 (x是未知数)
即有 P0...Px-1 = Pj-k...Pj-1
在P串中存在两个相等的最大真子串,真子串的限制:
第一个串以0下标开始
第二个串以 j - 1结束 K的值应该是真子串的长度
(2)next数组:
next数组的长度:strlen(p); 与子串长度相等
next[0] = -1; next[1] = 0;
举例:求出下面串的next数组
P | a | b | a | b | c | a | b | c | d | a | b | c | d | e |
next | -1 | 0 | 0 | 1 | 2 | 0 | 1 | 2 | 0 | 0 | 1 | 2 | 0 | 0 |
nextvalue数组:结合它的next数组求,比如下标为3的字符a,它的next值为0,而它的next[0] 也等于a,所以这个a的nextvalue值就取0下标a的next值,即为-1,如果不相等那么它的nextvalue值就等于它的next值。
P | a | b | c | a | a | b | b | c | a | b | c | a | a | b |
next | -1 | 0 | 0 | 0 | 1 | 1 | 2 | 0 | 0 | 1 | 2 | 3 | 4 | 5 |
nextvalue | -1 | 0 | 0 | -1 | 1 | 0 | 2 | 0 | -1 | 0 | 0 | -1 | 1 | 0 |
代码展示:
void GetNext(int *next, const char *der)
{
int lender = strlen(der);
next[0] = -1;
next[1] = 0;
int i = 2;
int k = 0;
while(i < lender)
{
if((k == -1) || der[k] == der[i-1])
{
next[i++] = ++k; //next[i] = k+1; i++; k+=1;
}
else
{
k = next[k];
}
}
}
int KMP(const char *src, const char *der,int pos)
{
int i = pos;
int j = 0;
int lensrc = strlen(src);
int lender = strlen(der);
int *next = (int *)malloc(lender*sizeof(int)); //跟子串的长度相等
assert(next != NULL);
GetNext(next,der);
while(i<lensrc && j<lender)
{
if((j == -1)|| src[i] == der[j])
{
i++;
j++;
}
else
{
j = next[j];
}
}
free(next);
if(j >= lender)
{
return i-j;
}
else
{
return -1;
}
}
int main()
{
char *s = "ababcabcdabcde";
char *sub = "abcd";
printf("%d\n",KMP(s,sub,10));
return 0;
}