自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(94)
  • 资源 (5)
  • 收藏
  • 关注

转载 目标检测

前言2016年的CVPR会议目标检测(在这里讨论的是2D的目标检测,如图1所示)的方法主要是基于卷积神经网络的框架,代表性的工作有ResNet[1](Kaiming He等)、YOLO[5](Joseph Redmon等)、LocNet[7](Spyros Gidaris等)、HyperNet[3](Tao Kong等)、ION[2](Sean Bell等)、G-CNN[6](Mahyar Naj

2016-11-08 13:52:23 6648

转载 CV Datasets on the web

link:http://www.cvpapers.com/datasets.htmlParticipate in Reproducible ResearchDetectionPASCAL VOC 2009 datasetClassification/Detection Competitions, Segmentation Competition, Person Layo

2016-10-22 09:58:50 626

转载 深度学习测试库说明

连接:http://blog.csdn.net/qq_14845119/article/details/51913171

2016-10-21 14:03:36 531

转载 Instance Segmentation Semantic Segmentation

作者:周博磊Instance Segmentation 比 Semantic Segmentation来源:知乎著作权归作者所有,转载请联系作者获得授权。最近也在做跟这个相关的问题,来分享一下自己的见解.图1. 这张图清楚说明了image classification, object detection, semantic segmentation, instanc

2016-10-18 19:59:27 2729

转载 bathsize问题

Batch_Size(批尺寸)是机器学习中一个重要参数,涉及诸多矛盾,下面逐一展开。首先,为什么需要有 Batch_Size 这个参数?Batch 的选择,首先决定的是下降的方向。如果数据集比较小,完全可以采用全数据集 ( Full Batch Learning )的形式,这样做至少有 2 个好处:其一,由全数据集确定的方向能够更好地代表样本总体,从而更准确地朝向极值所在的方向。其

2016-10-18 13:32:47 1306

转载 caffe 参数介绍

1)数据层及参数http://www.cnblogs.com/denny402/p/5070928.html2)视觉层(Vision Layers)及参数http://www.cnblogs.com/denny402/p/5071126.html3)激活层(Activiation Layers)及参数http://www.cnblogs.com/denny402/p/5

2016-10-18 11:52:28 341

转载 深度学习参考博客

1)MyArrow的专栏http://blog.csdn.net/myarrow?viewmode=contents

2016-10-18 10:53:36 480

转载 RCNN基础资料

1)Faster R-CNN CPU环境搭建http://www.cnblogs.com/justinzhang/p/5386837.html2)py-faster-rcnn + cpu安装及训练自己的数据集http://blog.csdn.net/zhang_shuai12/article/details/52295438

2016-10-14 09:01:53 420

转载 pycaffe利用caffemodel进行分类=>批处理

1)导入相关库import caffe2)配置# caffemodel文件MODEL_FILE = 'model/_iter_10000.caffemodel'# deploy文件,参考/caffe/models/bvlc_alexnet/deploy.prototxtDEPLOY_FILE = 'deploy.prototxt'# 测试图片存放文件夹TEST_

2016-10-12 15:15:38 624

转载 fcn基础资料

1)Build an AI Cat Chaser with Jetson TX1 and Caffehttps://devblogs.nvidia.com/parallelforall/ai-cat-chaser-jetson-tx1-caffe/project: http://myplace.frontier.com/~r.bond/

2016-10-12 14:49:15 679

转载 caffe基础资料

1)训练和测试自己的图片http://blog.csdn.net/langb2014/article/details/504585202) caffe学习资源汇总http://blog.csdn.net/langb2014/article/details/515433883)caffe调参经验资料文章http://blog.csdn.net/langb2014/arti

2016-10-11 10:01:13 808

转载 mnist资料

1)解析mnist数据库http://blog.csdn.net/zc02051126/article/details/515571662)mnist实例编译之model的使用http://blog.csdn.net/zb1165048017/article/details/524471093)使用OPENCV训练手写数字识别分类器http://blog.csdn.ne

2016-10-11 09:38:39 530

转载 根据 *_train_test.prototxt文件生成 *_deploy.prototxt文件

http://blog.csdn.net/u010417185/article/details/52137825本文参考博文(1)介绍 *_train_test.prototxt文件与 *_deploy.prototxt文件的不同:http://blog.csdn.NET/sunshine_in_moon/article/details/49472901    (2)生成deplo

2016-10-10 10:54:35 824

转载 caffe的配置过程

这篇文章可参考:http://www.cnblogs.com/cj695/p/4498270.html下载caffe拷贝Make.config.example Make.config修改Make.config 取消注释cpu-only,注释掉cuda相关的-----------------安装依赖的库------------------------参考docs/

2016-10-09 14:38:47 5222

转载 机器视觉开源代码集合

一、特征提取Feature Extraction:SIFT [1] [Demo program][SIFT Library] [VLFeat]PCA-SIFT [2] [Project]Affine-SIFT [3] [Project]SURF [4] [OpenSURF] [Matlab Wrapper]Affine Covariant Features [5] [Oxfor

2016-10-09 12:33:17 725

转载 Segmentation

https://handong1587.github.io/deep_learning/2015/10/09/segmentation.html#semantic-segmentation

2016-09-30 16:28:00 812

转载 使用FCN做图像语义分割(实践篇)

http://blog.csdn.net/gavin__zhou/article/details/52142696FCN原理原理我已经在上篇博客说过,大家可以参考FCN原理篇代码FCN有官方的代码,具体地址是FCN官方代码不过我用的不是这个代码,我用的是别人修改官方的版本的代码,使用Chainer框架实现的,Chainer的源码链接:Chainer框架源码,

2016-09-30 15:00:38 4216

转载 Jetson TK1 cuda opencv caffe 安装

Jetson TK1 opencv安装,mainfoldhttps://developer.nvidia.com/linux-tegra-rel-21

2016-09-18 22:03:20 1954

转载 基于CNN的性别、年龄识别

CNN应用之性别、年龄识别原文地址:http://blog.csdn.net/hjimce/article/details/49255013作者:hjimce一、相关理论  本篇博文主要讲解2015年一篇paper《Age and Gender Classification using Convolutional Neural Networks》,个人感

2016-07-14 16:41:44 942

转载 R-FCN:基于区域的全卷积网络来检测物体

原文标题为“R-FCN: Object Detection via Region-based Fully Convolutional Networks ”,作者代季峰 1,14年毕业的清华博士到微软亚洲研究院的视觉计算组,CVPR 16 两篇一作的会议主持人~ ╰(°▽°)╯ 同时公布了源码~ 2后面主要内容为原文随便的翻译或概括。必有不紧贴原文原意之处,曲解请指出,否则求放过~

2016-07-12 10:22:24 1180

转载 Caffe使用step by step:caffe框架下的基本操作和分析

caffe虽然已经安装了快一个月了,但是caffe使用进展比较缓慢,果然如刘老师说的那样,搭建起来caffe框架环境比较简单,但是完整的从数据准备->模型训练->调参数->合理结果需要一个比较长的过程,这个过程中你需要对caffe中很多东西,细节进行深入的理解,这样才可以知道为什么能有这样的结果,在训练或者fine-tuning时知道针对调整的方法。下面针对caffe中的使用进行讲解。  

2016-07-12 10:08:37 692

转载 DeepID算法实践

DeepID实践转载请注明:http://blog.csdn.net/stdcoutzyx/article/details/45570221好久没有写博客了,I have failed my blog. 目前人脸验证算法可以说是DeepID最强,本文使用theano对DeepID进行实现。关于deepid的介绍,可以参见我这一片博文 DeepID之三代。当然DeepID最强

2016-07-06 09:22:18 610

转载 ReLU上的花样

ReLU上的花样CNN出现以来,感觉在各个地方,即便是非常小的地方都有点可以挖掘。比如ReLU。ReLU的有效性体现在两个方面:克服梯度消失的问题加快训练速度而这两个方面是相辅相成的,因为克服了梯度消失问题,所以训练才会快。ReLU的起源,在这片博文里,对ReLU的起源的介绍已经很详细了,包括如何从生物神经衍生出来,如何与稀疏性进行关联等等。其中有一

2016-07-06 09:21:08 671

转载 一文读懂卷积神经网络CNN

自今年七月份以来,一直在实验室负责卷积神经网络(Convolutional Neural Network,CNN),期间配置和使用过theano和cuda-convnet、cuda-convnet2。为了增进CNN的理解和使用,特写此博文,以其与人交流,互有增益。正文之前,先说几点自己对于CNN的感触。先明确一点就是,Deep Learning是全部深度学习算法的总称,CNN是深度学习算法在图像处

2016-07-06 09:18:47 1099

转载 SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and <1MB model size阅读笔记

http://blog.csdn.net/jiajunlee/article/details/50785975版权声明:本文为LEE Jiajun原创文章,转载请注明出处。目录(?)[+]前言摘要介绍及动机Sec 2 SqueezeNetSec 3 Related WorkSec 4 EvaluationSec 5 Concl

2016-07-06 09:02:02 1634

转载 最新SqueezeNet 模型详解,CNN模型参数降低50倍,压缩461倍!

http://blog.csdn.net/xbinworld/article/details/50897870继续前面关于深度学习CNN经典模型的整理,之前介绍了CNN网络Lenet,Alexnet,Googlenet,VGG,Deep Residual Learning(点击查看)的网络结构。本文讲一下最新由UC Berkeley和Stanford研究人员一起完成的S

2016-07-06 08:59:49 2190

转载 李菲菲 bag of words

Bag-Of-Words中K-Means聚类的效率优化最初的Bag of words,也叫做“词袋”,在信息检索中,Bag of words model假定对于一个文本,忽略其词序和语法,句法,将其仅仅看做是一个词集合,或者说是词的一个组合,文本中每个词的出现都是独立的,不依赖于其他词 是否出现,或者说当这篇文章的作者在任意一个位置选择一个词汇都不受前面句子的影响而独立选择的。现在

2016-06-30 16:35:46 646

转载 深度卷积网络CNN与图像语义分割

出处: http://xiahouzuoxin.github.io/notes/级别1:DL快速上手级别2:从Caffe着手实践级别3:读paper,网络Train起来级别4:Demo跑起来读一些源码玩玩熟悉Caffe接口,写Demo这是硬功夫分析各层Layer输出特征级别5:何不自己搭个CNN玩玩Train CNN时关于数据集的一些注意事项级别6:加速

2016-06-30 15:55:04 1345

转载 深度学习语义分割

午餐之后,下午的演讲由两场语义分割开始,这意味着识别和描述图片中的物体。在道路场景解析(自动驾驶汽车),机器人抓取物体和医疗保健(分割肿瘤,龋齿等)等中是很有用的任务。Sven Behnke,波恩大学计算机科学系主管,讲述了两个算法,神经抽象金字塔和语义RGB-D感知器。《神经抽象金字塔(NAP)》是他的历史著作(约98年, 论文)。NAP是一个神经网络,其包括横向连接,与人类视觉系统工作

2016-06-30 15:52:51 7138

转载 2015伦敦深度学习峰会笔记:来自DeepMind、Clarifai等大神的分享

http://www.csdn.net/article/2015-10-17/2825945

2016-06-30 15:48:22 521

转载 caffe学习

Caffe学习系列(1):安装配置ubuntu14.04+cuda7.5+caffe+cudnnhttp://www.cnblogs.com/denny402/p/5067265.htmlCaffe学习系列(2):数据层及参数http://www.cnblogs.com/denny402/p/5070928.htmlCaffe学习系列(3):视觉层(Visi

2016-06-24 13:59:50 740

转载 准确率与召回率

在信息检索、分类体系中,有一系列的指标,搞清楚这些指标对于评价检索和分类性能非常重要,因此最近根据网友的博客做了一个汇总。准确率、召回率、F1信息检索、分类、识别、翻译等领域两个最基本指标是召回率(Recall Rate)和准确率(Precision Rate),召回率也叫查全率,准确率也叫查准率,概念公式:             召回率(Recall)      =

2016-04-02 22:39:29 630

转载 推荐系统评测指标—准确率(Precision)、召回率(Recall)、F值(F-Measure)

推荐系统评测指标—准确率(Precision)、召回率(Recall)、F值(F-Measure) 1、准确率与召回率(Precision & Recall)准确率和召回率是广泛用于信息检索和统计学分类领域的两个度量值,用来评价结果的质量。其中精度是检索出相关文档数与检索出的文档总数的比率,衡量的是检索系统的查准率;召回率是指检索出的相关文档数和文档库中所有的相关文档数的比

2016-03-30 10:47:43 1704

转载 Caffe路模型定义

1、第一层:数据层layers { name: "mnist" type: DATA data_param { source: "mnist_train_lmdb" backend: LMDB batch_size: 64 scale: 0.00390625 } top: "data" top: "label"}这是第一个层

2016-03-21 16:39:04 1105

转载 Fast rcnn set up

http://blog.sina.com.cn/s/blog_855a82cd0102vnjq.html原文:http://arxiv.org/pdf/1504.08083.pdf代码:https://github.com/rbgirshick/fast-rcnnFast rcnn1.准备工作1.1 软件准备   首先,需要安装Caffe和pycaffe。 

2016-03-20 16:07:06 812

转载 Deep learning学习

[1]Deep learning简介[2]Deep Learning训练过程[3]Deep Learning模型之:CNN卷积神经网络推导和实现[4]Deep Learning模型之:CNN的反向求导及练习[5]Deep Learning模型之:CNN卷积神经网络(一)深度解析CNN[6]Deep Learning模型之:CN

2016-03-18 11:00:56 435

转载 卷积神经网络入门学

卷积神经网络入门学原文地址:http://blog.csdn.net/hjimce/article/details/47323463作者:hjimce卷积神经网络算法是n年前就有的算法,只是近年来因为深度学习相关算法为多层网络的训练提供了新方法,然后现在电脑的计算能力已非当年的那种计算水平,同时现在的训练数据很多,于是神经网络的相关算法又重新火了起来,因此卷积神经网络就

2016-03-17 21:37:00 589

转载 Selective Search for Object Recognition

(有价值)原文:http://blog.csdn.net/surgewong/article/details/39316931

2016-03-17 10:03:37 454

转载 目标检测研究方向(ICCV2013、CVPR2013、ECCV2013目标检测相关论文)

ICCV2013、CVPR2013、ECCV2013目标检测相关论文CVPapers 网址: http://www.cvpapers.com/ ICCV2013 Papers about Object Detection:1. Regionlets for Generic Object Detection. Xiaoyu Wang, Ming Yang, She

2016-03-16 22:50:33 1982

转载 如何快糙好猛地在Windows下编译CAFFE并使用其matlab和python接口

https://github.com/Microsoft/caffe   微软版本caffe

2016-03-16 21:57:20 431

ocx动态创建

通过使用CreateControl方法动态图创建ocx控件,并利用GetControlUnknown等方法获取IDispatch指针, 采用 ATL 智能指针类调用 IDispatch 接口的方法和标准方式调用 IDispatch 接口的方法,使用activex控件,包括一个activex控件和一个测试工程以及相关需要的资料

2012-05-06

各种基本运动估计算法代码

各种运动估计算法基础,基本思想是将图像序列的每一帧分成许多互不重叠的宏块,并认为宏块内所有象素的位移量都相同,然后对每个宏块到参考帧某一给定特定搜索范围内根据一定的匹配准则找出与当前块最相似的块,即匹配块,匹配块与当前块的相对位移即为运动矢量。视频压缩的时候,只需保存运动矢量和残差数据就可以完全恢复出当前块。

2011-09-23

视频编码标准中运动估计技术研究 论文

基本思想是将图像序列的每一帧分成许多互不重叠的宏块,并认为宏块内所有象素的位移量都相同,然后对每个宏块到参考帧某一给定特定搜索范围内根据一定的匹配准则找出与当前块最相似的块,即匹配块,匹配块与当前块的相对位移即为运动矢量。视频压缩的时候,只需保存运动矢量和残差数据就可以完全恢复出当前块。

2011-09-23

JM工程代码

基本思想是将图像序列的每一帧分成许多互不重叠的宏块,并认为宏块内所有象素的位移量都相同,然后对每个宏块到参考帧某一给定特定搜索范围内根据一定的匹配准则找出与当前块最相似的块,即匹配块,匹配块与当前块的相对位移即为运动矢量。视频压缩的时候,只需保存运动矢量和残差数据就可以完全恢复出当前块。

2011-09-23

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除