论文阅读《Feature Error Model for Integrity of Pattern-based Visual Positioning》

1 摘要

基于相机的视觉导航技术可以使用视觉模式提供高精度的无基础设施定位解决方案,并在卫星导航可用性、准确性和完好性方面显著退化的环境中发挥重要作用。然而,视觉导航方法的完好性监测是一个重要但却难以解决的问题,因为相机几何误差建模是一个相当具有挑战性的问题。本文提出了一种高精度的几何误差模型,它用于棋盘状特征角点。该模型被称为棋盘角点几何误差模型(CCGEM)。将该模型应用于含有棋盘状图案的图像时,可以预测在不同光照条件下提取的角点的位置精度。模型中的参数可以通过标定以适应不同的相机镜头系统。该方法首先以原始图像作为测量输入,对提取的角点局部领域的灰度分布进行建模。然后,将特征位置的几何误差建模为分布参数的函数。结果表明,该模型能够很好地拟合仿真和真实图像的测量误差。该模型还提供了一个包含风险概率信息的保守拟合模型,可应用于基于视觉定位的完好性监测。

2 介绍

基于相机的视觉定位技术已被广泛应用于无人机(UAV)自主着陆的研究中。例如Sharp等人和Cesetti等人的方法已经引起了研究界的极大关注。此外,视觉导航技术在各种应用中具有巨大的潜力,特别是诸如城市地区这样的环境中,由于缺乏信号可用性和多径效应,卫星导航可能会显著降低性能,如Narula等人的工作所示。然而,视觉导航的定量的完好性监测尚未得到很好的解决。

三个基本部件是开发视觉导航完好性所必需的。首先,需要一个名义上的特征位置误差模型。其次,需要计算精度稀释因子(DOP),以评估几何形状对估计位置的影响。最后,在视觉导航完好性监测中,应针对不同的故障模式制定具体的故障检测与排除方案。本文的工作重点是建立一个用于特征位置的随机误差模型。建立随机误差模型不仅可以监测视觉导航方法的标称性能,而且可以使研究人员更好地了解视觉测量中的误差源,从而合理地定义故障模式。

同时,对所提取的特征位置的误差进行表征是视觉完好性监测的最大难点之一。在基于特征的视觉导航方法中,二维特征的坐标作为传感器的测量值。然而,坐标是间接测量。对于相机传感器,原始测量是图像像素灰度值。像素灰度的测量噪声通常被称为光度误差 n I n_I nI,它被建模为一个零均值高斯分布,其协方差为 σ n I \sigma_{n_I} σnI。图1用一个简单的实例说明了光度噪声及其对特征提取的影响。图1a为无噪声的棋盘图像,蓝色“+”标记表示角点的真实位置。在图1b中,光度噪声的存在导致了黑白颜色的微小变化。因此,特征检测器提取的角点位置,用红色的“+”标记,与真值相比是不正确的。估计的特征位置的误差称为几何误差。
在这里插入图片描述

图1 特征提取中的光度误差及相应的几何误差

对于通用的随机几何误差模型,存在几个挑战。首先,特征点的分布不均匀,即不同的特征点可能遵循不同的分布。光照条件决定灰度值,特征类型和视角影响特征的邻域内灰度的几何分布。任何一种影响都会导致几何误差分布的变化。此外,由于特征提取算法通常包含复杂的启发式操作,描述从灰度域的光度误差到特征位置域的几何误差的误差转换具有相当大的挑战性。此外,物理光学系统也会对测量图像产生影响。当光线通过透镜时,由于衍射和扩散等效应,会产生光学模糊,通常用高斯点扩散函数(PSF)来描述。因此,特征位置误差的分布依赖于所应用的相机和镜头。由于几何误差分布的多样性,简单地从大量的数据中建立统计量,得出一个均匀分布作为误差模型是不合理的。

虽然在视觉导航中,几何误差分布是必要的,但上述问题尚未得到很好的解决。在目前最先进的视觉导航方法如ORB-SLAM中,几何误差协方差的选取通常使用一些启发式的值(如在ORB-SLAM中设置为1像素)。这对于完好性监测来说是不可接受的,因为如果可见场景发生变化,针对特定场景调整参数并不能确保模型是有效的。重投影误差(位姿估计的特征位置残差)被广泛应用于视觉导航教材中,如[6]等来描述特征误差。然而,残差统计量显然不是一个适当的误差模型,因为用于计算重投影误差的估计状态可能已经有偏差。Kumar和Osechas在[7]中表明,Edwards等人在[8]中表明,对于设计的模式,特征位置误差在名义上服从高斯分布。然而,结果仍然是定性的,因为分布的方差仍然是一个特殊场景下从实验中获得的启发值。

在本工作中,我们提出了一种亚像素精度的几何误差模型,它用于特征角点,我们称它为CCGEM。CCGEM的目标是特定类型的角点(棋盘状的“X”交叉点),这些角点可以是设计的地标,也可以是提取到的自然特征。它将随机几何误差模型建模为测量图像中几个局部参数的函数,这些参数随光照或可见场景的变化而变化。这些参数可以从局部图像的角点周围的块中提取,且复杂度适中。模型中的一些参数与所开发的光学仪器有关。这些参数可以通过对每个不同的相机镜头组合的标定过程获得,因此它适用于终端用户的不同光学系统。因此,CCGEM是一种可推广到不同光学系统和光照条件下的特征位置定量的误差模型。此外,在完好性要求的参数拟合过程中,提出了保守策略。

3 系统模型

在本节中,我们阐明了系统模型和在开发误差模型时的假设。从数码相机获取的测量图像可以建模如下:
I = I 0 ∗ G + n I ∈ Z I N h × N w (1) I=I_0*G+n_I\in Z_I^{N_h\times N_w} \tag{1} I=I0G+nIZINh×Nw(1)
其中 N h N_h Nh N w N_w Nw分别是图像的高度和宽度, Z I Z_I ZI是灰度值的集合。对于普通的8位数字图像, Z I = { z ∣ z = 0 , 1 , . . . , 255 } Z_I=\{z|z=0,1,...,255\} ZI={zz=0,1,...,255}。为了一般性,在本文中,我们使用在[0,1]中具有离散值的归一化灰度,而没有指定量化级别。 I 0 I_0 I0为曝光时间内可见场景真实亮度对应的图像。按照惯例,光学系统的影响可以建模为 I 0 I_0 I0与二维数字高斯滤波器 G G G的卷积。图2展示了真实测量图像中的光学模糊效应,作为直观的说明。 n I n_I nI是高斯光度噪声。

在这里插入图片描述

图2 测量图像中的光学模糊效应

对于从测量图像 I I I中提取的特征点 u ∈ Ω ⊂ R 2 u\in \Omega \subset R^2 uΩR2 Ω \Omega Ω表示图像平面),特征的估计位置 u ^ \hat u u^与真实值相比存在误差。由于我们的工作重点是特征位置测量的随机误差,这里不讨论来自特定特征检测器的测量偏差。然而,随机误差模型可以用于统计检验,以确定一个特征位置测量是否有偏差。

因此,在标称情况下,提取的特征位置可以写成,
u ^ = F ( I ) = u + n u (2) \hat{u}=F(I)=u+n_u\tag{2} u^=F(I)=u+nu(2)
根据Kumar等人和Edwards等人的早期工作,在恒定光照条件下,几何误差服从二维高斯分布,只要相机稳定,两个维度均为各向同性分布,因此提取的特征位置误差的协方差可以表示为,
Σ u = E { n u n u T } = [ σ x 2 σ x y σ x y σ y 2 ] = [ σ u 2 0 0 σ u 2 ] (3) \Sigma_u=E\{n_un_u^T\}=\begin{bmatrix} \sigma_x^2 & \sigma_{xy} \\ \sigma_{xy} & \sigma_y^2 \end{bmatrix}=\begin{bmatrix} \sigma_u^2 & 0 \\ 0 & \sigma_u^2 \end{bmatrix} \tag{3} Σu=E{nunuT}=[σx2σxyσxyσy2]=[σu200σu2](3)
结果表明,参数 σ u \sigma_u σu可以很好地描述特征的随机几何误差。然而,正如在介绍部分中提到的,建模 σ u \sigma_u σu的值是具有挑战性的,因为误差分布随局部灰度而变化,而局部灰度受特征类型、光照条件和不同的光学系统的影响。

我们通过只研究一种特定类型的特征来简化这个问题,即如图1所示的棋盘状的“X”形角点。对于几何误差建模,“X”形角点有一些有利的性质。首先,通过检测“X”形角点,可以解决由角点形状多样性引入的误差分布变化。其次,棋盘状角点的相邻区域是几何对称的,且角点位于两条线的交点处。因此,寻找可靠的无偏估计器来定位角点是可行的。在我们的方法中,我们应用了目前最先进的鞍点估计器,它是专门为“X”形角点设计的,且带有亚像素精度。此外,我们可以用很少的参数来描述角点附近的灰度几何分布,这使得我们提出的误差模型能够适应光照和光学变化,同时保持它的非穷举性和计算上的可行性。

4 应用CCGEM的工作流程

在本节中,我们对CCGEM进行了总结,同时还提供了终端用户生成和应用该模型的工作流程。下面将详细解释和推导所提出的误差模型。

对于棋盘状特征(“X”-junctions),我们在本工作中提出了一个通用的几何误差模型CCGEM,该模型考虑了上述影响。该模型总结为,
σ u = g ( σ I , Δ I , s L ) = ( α 1 + α 2 s L α 3 ) σ I Δ I (4) \sigma_u=g(\sigma_I,\Delta I, s_L) = (\alpha_1+\alpha_2s_L^{\alpha_3})\frac{\sigma_I}{\Delta I} \tag{4} σu=g(σI,ΔI,sL)=(α1+α2sLα3)ΔIσI(4)
其中 σ u \sigma_u σu是公式(3)中定义的提取到的特征位置的随机误差的标准差。它依赖于局部光度误差协方差 σ I \sigma_I σI,局部灰度差参数 Δ I \Delta I ΔI和镜头模糊参数 s L s_L sL。这三个参数都是从测量图像中被检测出的角点的相邻区域中提取出来的。 α 1 \alpha_1 α1 α 2 \alpha_2 α2 α 3 \alpha_3 α3是CCGEM模型的参数,通过标定可以自适应估计,且对不同的测量图像不发生变化。因此,一旦生成参数,该模型就可以应用于同一光学系统在变化环境下预测特征位置误差的协方差。在开发模型时,只需要测量图像作为输入。

图3为具体光学系统离线标定过程中生成CCGEM的工作流程。首先,棋盘的大量静态图像需要在光照一致的受控环境中拍摄,以校准不同相机镜头系统的参数。图像具有相同的可见场景,但独立的光度噪声。通过利用亚像素精度角点检测器来提取出所有图像的棋盘角点,每个角点位置 ζ u \zeta_u ζu的协方差可以通过对 u ^ \hat{u} u^的统计数据获得。由于特征检测算法不是本工作的主要重点,我们假设棋盘角点可以被正确检测。对于每个角点,我们首先计算从原始图像中提取出的角点附近区域的灰度直方图。然后,用高斯混合分布模型对直方图进行拟合。由于棋盘状的图案包含角点周围区域可区分的黑白像素,高斯混合模型(GMM)包含了来自白色区域的一个分量的分布和来自黑色区域的另一个分量的分布。两个高斯分量的均值和协方差可以通过高斯混合拟合来估计。从拟合的GMM中,可以提取出参数 σ I \sigma_I σI Δ I \Delta I ΔI。此外,利用高斯分量的参数,可以估计出透镜引入的光学模糊影响的度量参数 s L s_L sL。因此,利用所有提取到的棋盘角点的测量值进行曲线拟合,可以计算出方程(4)中参数 α 1 \alpha_1 α1 α 2 \alpha_2 α2 α 3 \alpha_3 α3。根据应用情况,曲线拟合可能遵循不同的准则。对于完好性监测等关键应用,我们提供了最小二乘拟合策略和保守拟合策略。

在这里插入图片描述

图3 为相机生成CCGEM的工作流程图

在离线标定系数后,将该模型应用于板载测量图像。图4展示了将CCGEM应用于包含棋盘状“X”-junctions的图像的工作流程。通过对图像进行在线处理,应用带有角点局部灰度参数( σ I \sigma_I σI Δ I \Delta I ΔI s L s_L sL)的该模型可以预测随机几何误差,其提取算法与标定流程中使用的相同。

在这里插入图片描述

图4 将CCGEM应用到用于视觉导航的图像的工作流程

因此,所提出的CCGEM可以对包含棋盘状模式的图像的特征位置误差进行建模,并可用于视觉导航的完好性监测。

5 棋盘角点几何误差模型

几乎所有的角点检测器都利用了这样一个事实,即在角点附近,在两个维度上都存在显著的灰度值梯度。通常我们可以将角点检测器建模为,
u ^ = F ( I , ∇ I ) (5) \hat{u}=F(I,\nabla I) \tag{5} u^=F(I,I)(5)
其中 I I I角点附近的图像块, ∇ I \nabla I I是相应的灰度梯度。对于棋盘的"X"-junctions角点,通过白像素和黑像素的减法得到角点周围的有效图像梯度。不失一般性,我们假设黑白像素灰度遵循独立分布。在没有测量噪声的情况下,理想棋盘角点的灰度的概率密度函数(pdf)由两个dirac函数组成。图5为一个简单的例子,图1a中无噪声图像的分布。
在这里插入图片描述

图5 无噪声情况下灰度的概率密度函数

当存在高斯测量噪声(公式(1)中的 n I n_I nI)时,灰度分布变为高斯混合分布,如图6所示(对应图1b中的图像)。
在这里插入图片描述

图6 高斯噪声下灰度的概率密度函数

为了保持模型的通用性,允许不同颜色的噪声协方差不同。黑色像素灰度服从高斯分布 I b ∼ N ( b ˉ , σ b 2 ) I_b \sim N(\bar{b},\sigma_b^2) IbN(bˉ,σb2),而白色像素灰度服从 I w ∼ N ( w ˉ , σ w 2 ) I_w\sim N(\bar{w},\sigma_w^2) IwN(wˉ,σw2)。角点检测器利用由一对白像素和黑像素形成的显著梯度。因此,在 x x x y y y维上,用于角点检测的有效梯度通常被计算为 ∇ I = I w − I b \nabla I=I_w-I_b I=IwIb。在实践中,通常是通过使用二维数字梯度滤波器对图像进行滤波。因此,用于提取棋盘角点的图像梯度遵循高斯分布,
∇ I ∼ N ( Δ I , σ I 2 ) , w h e r e   Δ I = w ˉ − b ˉ , σ I = σ w 2 + σ b 2 (6) \nabla I \sim N(\Delta I, \sigma_I^2), where\ \Delta I=\bar{w}-\bar{b},\sigma_I=\sqrt{\sigma_w^2+\sigma_b^2} \tag{6} IN(ΔI,σI2),where ΔI=wˉbˉ,σI=σw2+σb2 (6)
因此,特征的几何误差的协方差取决于两个分布参数 σ I \sigma_I σI Δ I \Delta I ΔI

可以证明,对于应用的棋盘角点提取算法,存在以下关系:
σ u ∼ σ w 2 + σ b 2 w ˉ − b ˉ = σ I Δ I (7) \sigma_u\sim \frac{\sqrt{\sigma_w^2+\sigma_b^2}}{\bar{w}-\bar{b}}=\frac{\sigma_I}{\Delta I} \tag{7} σuwˉbˉσw2+σb2 =ΔIσI(7)
即角点位置估计的不确定度 σ u \sigma_u σu与两种颜色灰度差的不确定度成线性关系,与平均差成反比。从直观上看,黑白分量越容易区分(对比度越高),提取的角点位置就越准确。如果光度测量噪声较大,两种颜色的区分就比较困难,导致角点位置的不确定度较大。

为了对某一特定角点的几何误差进行建模,需要从测量图像中提取这两个分布参数。我们使用高斯混合模型(GMM)来演示每个提取到的棋盘角点特征的灰度分布。从有噪声的测量图像中检测出一个角点,可以建立其邻域的灰度直方图。通过对直方图进行高斯混合拟合,可以得到生成的GMM的参数 w ˉ ^ \hat{\bar{w}} wˉ^ b ˉ ^ \hat{\bar{b}} bˉ^ σ ^ w \hat{\sigma}_w σ^w σ ^ b \hat{\sigma}_b σ^b。然后,可以计算出灰度梯度分布参数为,
Δ I ^ = w ˉ ^ − b ˉ ^ (8) \hat{\Delta I}=\hat{\bar{w}}-\hat{\bar{b}} \tag{8} ΔI^=wˉ^bˉ^(8)

σ ^ I = σ ^ w 2 + σ ^ b 2 (9) \hat{\sigma}_I=\sqrt{\hat{\sigma}_w^2+\hat{\sigma}_b^2} \tag{9} σ^I=σ^w2+σ^b2 (9)

对模拟图像和真实图像进行局部灰度分布GMM拟合,分别如图7和图8所示。在仿真中,黑白两色添加的噪声具有不同的标准差,从而验证了一般情况下的拟合性能。在真实图像中,两种颜色在局部图像块中的噪声方差应该几乎相同。
在这里插入图片描述

图7 模拟图像的高斯混合模型拟合

拟合结果表明,该模型较好地反映了局部灰度分布。但从图8中可以看出,在真实测量图像中,黑白分量高斯峰之间存在一个灰色区域。这是由于像素的空间量化和物理透镜的光学模糊效应。为了精确地模拟特征提取的几何误差,我们提出的模型还考虑了镜头的影响。根据计算机视觉和图像处理领域的工作,通常将透镜的模糊效应建模为对原始图像的低通高斯滤波器。提取的角点位置的不确定性随着高斯滤波器标准差 σ L \sigma_L σL的增大而增大。根据参数拟合, σ L \sigma_L σL对特征位置不确定性的影响如下,
σ u ∼ α 1 + α 2 σ L α 3 (10) \sigma_u \sim \alpha_1+\alpha_2\sigma_L^{\alpha_3} \tag{10} σuα1+α2σLα3(10)
其中 α 1 \alpha_1 α1 α 2 \alpha_2 α2 α 3 \alpha_3 α3为特定光学系统的拟合系数。
在这里插入图片描述

图8 真实图像高斯混合模型拟合

通过利用棋盘的先验信息,高斯滤波器的孔径(即协方差)可以使用最大似然(ML)估计器估计。我们首先通过在 u u u位置处生成理想的局部块 I ~ \tilde{I} I~来估计高斯滤波器的孔径。分别对图像的白分量和黑分量的灰度值应用GMM估计的平均值 w ˉ ^ \hat{\bar{w}} wˉ^ b ˉ ^ \hat{\bar{b}} bˉ^。在此基础上,对具有透镜模糊效应的测量图像进行建模,
I = I ~ ∗ G ( σ L ) + n I (11) I=\tilde I *G(\sigma_L)+n_I \tag{11} I=I~G(σL)+nI(11)
其中 ∗ * 表示卷积操作, n I n_I nI表示光度噪声, G ( σ L ) G(\sigma_L) G(σL)是协方差为 σ L 2 \sigma_L^2 σL2的二维的高斯核。当 σ L \sigma_L σL较大时,由于透镜的作用,测量图像会变得更加模糊。给定测量图像 I I I,使用ML估计器的最优滤波器协方差可以通过下式获得,
s L = σ ^ L = a r g m a x σ L ( I ∣ σ L ) (12) s_L=\hat{\sigma}_L=\underset{\sigma_L}{argmax}(I|\sigma_L) \tag{12} sL=σ^L=σLargmax(IσL)(12)
在高斯光度噪声假设下,公式(12)所描述的优化问题可以用相应的最小二乘估计等价地求解。我们在模型中使用 s L s_L sL而不是 σ ^ L \hat{\sigma}_L σ^L,以使符号清楚,因为参数的标准差也将被包含在稍后的保守建模策略中。最后,将CCGEM模型的三个基本参数 σ I \sigma_I σI Δ I \Delta I ΔI s L s_L sL从图像中提取出来。

对于特定的相机镜头系统,在公式(4)中的系数利用上述离线标定过程中所有可用的棋盘角点,通过最小二乘(LS)曲线拟合估计为,
{ α i ^ ∣ i = 1 , 2 , 3 } = a r g m i n α i ∑ j = 1 N c ( ( α 1 + α 2 s L j α 3 ) σ I j Δ I j − ζ u j ) 2 (13) \{\hat{\alpha_i}|i=1,2,3\}=\underset{\alpha_i}{argmin} \sum_{j=1}^{N_c}((\alpha_1+\alpha_2s_{L_j}^{\alpha_3})\frac{\sigma_{I_j}}{\Delta I_j}-\zeta_{u_j})^2 \tag{13} {αi^i=1,2,3}=αiargminj=1Nc((α1+α2sLjα3)ΔIjσIjζuj)2(13)
其中 N c N_c Nc表示标定过程中使用的棋盘角点的数目,而 j j j表示相应的索引。 ζ u j \zeta_{u_j} ζuj是由统计得到的离散度。在系数已知的情况下,对任意测量图像中的一个角点,利用所提出的模型,应用公式(4)中的 σ u = g ( σ I , Δ I , s L ) \sigma_u=g(\sigma_I,\Delta I, s_L) σu=g(σI,ΔI,sL),可以计算出几何误差标准差 σ u \sigma_u σu的预测,
σ ~ u = ( α ^ 1 + α ^ 2 s L α 3 ^ ) σ ^ I Δ I ^ (14) \tilde {\sigma}_u=(\hat{\alpha}_1+\hat{\alpha}_2s_L^{\hat{\alpha_3}})\frac{\hat{\sigma}_I}{\hat{\Delta I}} \tag{14} σ~u=(α^1+α^2sLα3^)ΔI^σ^I(14)

6 安全关键应用的保守误差建模

该模型仅用少量的参数和系数就能描述特征的几何误差。然而,在实际应用中,当CCGEM模型用于视觉导航完好性监测等安全关键应用时,应保守地包络模型中的不确定性,并考虑参数提取过程中的潜在风险,使其不会产生误导信息。上述参数提取过程中存在两个潜在风险:
(1)风险1:提取的灰度梯度 Δ I \Delta I ΔI被高估了。此分险的概率用 p ( R 1 ) p(R_1) p(R1)表示。
(2)风险2:透镜模糊系数 s L s_L sL被低估了。此风险的概率用 p ( R 2 ) p(R_2) p(R2)来表示。

该风险1是由于角点提取过程中存在光学模糊的影响。如图2和图8所示,光学模糊的结果是在颜色边界处出现一个灰色区域,直方图中出现相应的灰色峰值。在特征检测过程中,所应用的灰度梯度测量并不总是白像素和黑像素之间的灰度差,而可能包括灰色区域中的像素。用 p g p_g pg表示高斯混合分布中出现灰色峰值的概率,那么风险概率为,
p ( R 1 ) = 1 − ( 1 − p g ) 2 N g (15) p(R_1)=1-(1-p_g)^{2N_g} \tag{15} p(R1)=1(1pg)2Ng(15)
其中 N g N_g Ng表示局部块中用于提取角点的边界像素对的数目。

产生第二个风险的原因是 s L s_L sL的估计具有随机不确定性。由于 s L s_L sL的ML估计器使用有噪声的测量图像,估计的 s L s_L sL的不确定度随着透镜模糊强度和测量噪声水平的增加而增加。通过曲线拟合,可以将估计的协方差 σ S L \sigma_{S_L} σSL建模为,
σ S L = ( β 1 + β 2 s L ) σ I Δ I (16) \sigma_{S_L}=(\beta_1+\beta_2s_L)\frac{\sigma_I}{\Delta I} \tag{16} σSL=(β1+β2sL)ΔIσI(16)
系数 β 1 \beta_1 β1 β 2 \beta_2 β2可以通过标定获得。因此,透镜模糊参数 s L s_L sL可以通过下式被包络,
s ˇ L = s L + k L σ S L (17) \check{s}_L=s_L+k_L\sigma_{S_L} \tag{17} sˇL=sL+kLσSL(17)
其中参数 k L k_L kL决定置信水平。风险概率 p ( R 2 ) p(R_2) p(R2)为给定扩大因子 k L k_L kL对应的双尾概率。此外,由于用于标定的数据的不确定性随着图像噪声的增加而增加,对公式(13)中的系数进行最小二乘拟合并不能确保建模的误差在给定的置信水平下包络实际误差。为了使保守模型在安全关键应用的完好性上包络误差,应采用一种包络所有训练样本的保守系数拟合策略。将系数扩大至所有样本均被包络,可得到保守系数为 { α ˇ i ∣ i = 1 , 2 , 3 } \{\check{\alpha}_i|i=1,2,3\} {αˇii=1,2,3}。因此,在完好性监测或其它安全关键应用中,角点位置误差可以被标准差为 σ ˇ u \check{\sigma}_u σˇu的高斯模型所包络,
σ ˇ u = ( α ˇ 1 + α ˇ 2 s ˇ L α ˇ 3 ) σ I Δ I (18) \check{\sigma}_u=(\check{\alpha}_1+\check{\alpha}_2\check{s}_L^{\check{\alpha}_3})\frac{\sigma_I}{\Delta I} \tag{18} σˇu=(αˇ1+αˇ2sˇLαˇ3)ΔIσI(18)
LS拟合和保守拟合得到的几何误差模型如图9所示,分别为蓝色曲面和绿色曲面。
在这里插入图片描述

图9 对于sigma_I、Delta_I和s_L的不确定模型拟合:LS拟合和包络拟合

图中的每个点表示用于标定系数拟合的角点样本的位置不确定度。从图中可以看出,随着图像噪声的增加,除了角点位置误差 σ u \sigma_u σu的倾斜外,从标定图像中得来的 ζ u \zeta_u ζu的离散度也在增加。可以看到,部分角点的不确定度测量值大于蓝色表面的值,这代表了LS拟合得到的不确定度模型。同时,保守拟合策略得到的绿色曲面保证了拟合过程中所有样本点都被包络。图10的侧视图可以更好地说明这种差异。
在这里插入图片描述

图10 对于sigma_I、Delta_I和s_L的不确定模型拟合(侧视图)

7 应用CCGEM的实验结果

首先,我们使用测试图像来验证公式(4)中CCGEM模型的正确性。图11展示了特征位置误差的标准差相对于不同参数的结果。
在这里插入图片描述

图11 模型验证

将测试图像中 x x x y y y两个维度的特征位置不确定度绘制为红点。不同局部参数 ( Δ I , σ I , s L ) (\Delta I,\sigma_I,s_L) (ΔI,σI,sL)的曲线拟合结果在图中以蓝色表示。首先,验证了二维空间误差分布是各向同性的。左图和中间图的 σ I \sigma_I σI值相同,但左图的 σ I \sigma_I σI Δ I \Delta I ΔI的比值是中间图的两倍。可以看出,几何误差协方差也扩大了一倍。同时,左右图中 σ I / Δ I \sigma_I/\Delta I σI/ΔI的比值相同,但两个单独参数不同。可以看出,在这种情况下,两种场景下的几何误差协方差是相同的。因此,可以验证几何误差与理论预测的因子 σ I / Δ I \sigma_I/\Delta I σI/ΔI成正比。此外,在这三幅图像中,几何误差对镜头模糊参数 s L s_L sL都遵循相同的函数。结果表明,所提出的CCGEM模型较好地描述了几何误差随参数的变化规律。

我们利用不同的真实测量图像进一步验证和分析了模型的性能。我们的测试数据集包含12个场景,每个场景包含2000张图片。在每张图像上,提取48个棋盘角点。几何误差不确定度 ζ u \zeta_u ζu可以从对2000幅图像中每个角点的统计中计算出来。正如我们在介绍中提到的一个挑战,所有角点的局部照明条件略有不同,这导致了不同的误差分布。为了更好地展示CCGEM的性能,我们利用模型预测的标准差 σ ~ u \tilde{\sigma}_u σ~u,绘制了归一化后的几何误差 ε x \varepsilon_x εx ε y \varepsilon_y εy的分布。理想情况下,如果模型能够很好地描述误差分布,即 σ ~ u = σ u \tilde{\sigma}_u=\sigma_u σ~u=σu,比值 ε x / σ ~ u \varepsilon_x/\tilde{\sigma}_u εx/σ~u ε y / σ ~ u \varepsilon_y/\tilde{\sigma}_u εy/σ~u将服从标准高斯分布。对于使用的测试图像数据集,经过建模标准差归一化后的角点几何误差直方图如图12所示。可以看出,直方图近似符合标准正态分布,说明CCGEM的预测误差很好地描述了特征位置的随机误差。
在这里插入图片描述

图12 模型不确定性检验:误差直方图与标准正态分布的比较

然而,从图12中可以看出,在分布的尾部,标准正态分布并不总是包络归一化误差。为了更好地说明尾部部分,图13提供了两个分布的分位数-分位数图(QQ-plot)。可以清楚地看到,标准正态分布不包络误差尾部。这表明,在某些特征几何误差较大的情况下,模型低估了该误差,这在导航完好性监测等安全关键应用中将会是危险的。
在这里插入图片描述

图13 利用最小二乘拟合模型的分位数-分位数图

因此,对于安全关键应用,应采用上述来自CCGEM的保守误差模型,而不是最小二乘拟合模型。图14显示了使用保守模型与标准高斯分布的归一化误差的QQ图。可以看出,标准高斯分布包络住了误差分布的尾部,说明CCGEM的保守模型没有低估所有测试图像的特征位置误差。
在这里插入图片描述

图14 采用保守策略拟合的模型的分位数-分位数图

8 结论

我们提出了一个名为CCGEM的几何误差模型,用于棋盘状的视觉特征(“X”-junctions)。该模型将提取的特征位置误差分布描述为角点周围几个局部参数的函数。CCGEM可以应用于不同的照明条件和不同的光学系统中。该模型的系数可在离线标定过程中得到。CCGEM同时提供了安全关键应用的最小二乘拟合模型和保守模型。最小二乘拟合模型能够较好地预测测量误差分布。同时,保守模型保证了模型在不产生误导信息的前提下,能够包络较大的测量误差。

9 参考文献

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

YMWM_

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值