矩阵理论
文章平均质量分 71
YMWM_
在线建图
HD地图数据编译
视觉导航完好性
展开
-
求矩阵的高次幂
Cayley-Hamilton定理说明,对于任意一个nnn阶矩阵AAA,一定存在着多项式φ(λ)\varphi(\lambda)φ(λ),使得φ(A)=0\varphi(A)=0φ(A)=0。例1设A=[−34−35]A=\begin{bmatrix} -3 & 4 \\-3 & 5 \end{bmatrix}A=[−3−345],求A1000A^{1000}A1000。解答:(1)求解矩阵AAA的特征值,∣A−λI∣=∣−3−λ4−35−λ∣=(λ−3)(λ+1)\lv原创 2022-01-12 20:37:24 · 2552 阅读 · 0 评论 -
矩阵范数介绍
(1)矩阵AAA的无穷范数∣∣A∣∣∞||A||_\infty∣∣A∣∣∞,计算如下,(也称为最大行)∣∣A∣∣∞=max1≤i≤n∑j=1n∣aij∣||A||_\infty=\underset{1\leq i \leq n} {\operatorname{max}}\sum_{j=1}^{n}|a_{ij}|∣∣A∣∣∞=1≤i≤nmaxj=1∑n∣aij∣(2)矩阵AAA的1范数∣∣A∣∣1||A||_1∣∣A∣∣1,计算如下,(也称为最大列)∣∣A∣∣1=max1≤j≤n∑原创 2021-11-20 20:11:01 · 4228 阅读 · 1 评论