状态估计
文章平均质量分 84
YMWM_
在线建图
HD地图数据编译
视觉导航完好性
展开
-
离散时间下的卡尔曼滤波器
已知运动方程为, xk=ϕk∣k−1xk−1+Γk−1wk−1(1) x_k=\phi_{k|k-1}x_{k-1}+\Gamma_{k-1}w_{k-1} \tag{1} xk=ϕk∣k−1xk−1+Γk−1wk−1(1) 其中xkx_kxk表示kkk时刻的后验状态,ϕk∣k−1\phi_{k|k-1}ϕk∣k−1表示状态转移矩阵,xk−1x_{k-1}xk−1表示k−1k-1k−1时刻的后验状态,Γk−1\Gamma_{k-1}Γk−1表示噪声矩阵,wk−1w_{k-1}wk−1原创 2021-11-29 21:34:27 · 658 阅读 · 0 评论 -
测量数目增加,估计出来的状态的协方差减小
考虑这样一个问题, y=Ax+ε(1) y = A x + \varepsilon \tag{1} y=Ax+ε(1) 其中yyy为测量,AAA为测量关系矩阵,xxx为状态,ε\varepsilonε为噪声(服从高斯分布)。已知yyy和AAA,ε\varepsilonε未知,请求解xxx。 加权最小二乘算法: 权重矩阵WWW取各个测量的标准差之逆, W=[1σy11σy2⋱1σyn](2) W = \begin{bmatrix} \frac{1}{\sigma _{y_1}} & &am原创 2021-10-10 14:00:35 · 151 阅读 · 0 评论