acwing算法基础之数学知识--中国剩余定理

123 篇文章 1 订阅

1 基础知识

中国剩余定理的内容如下:

已知整数 m 1 m_1 m1 m 2 m_2 m2、… m k m_k mk两两互质,则对于任意的整数 a 1 a_1 a1 a 2 a_2 a2 a k a_k ak,方程组

{ x ≡ a 1 ( m o d   m 1 ) x ≡ a 2 ( m o d   m 2 ) ⋯ x = a k ( m o d   m k ) \left \{ \begin{matrix} x \equiv a_1 (mod\ m_1) \\ x \equiv a_2 (mod\ m_2) \\ \cdots \\ x = a_k (mod \ m_k) \end{matrix} \right. xa1(mod m1)xa2(mod m2)x=ak(mod mk)
都存在整数解,并且在模 M = m 1 ⋅ m 2 ⋯ m k M=m_1\cdot m_2\cdots m_k M=m1m2mk下的解是唯一的,该解可以表示如下,
x = ( a 1 M 1 M 1 − 1 + a 2 M 2 M 2 − 1 + ⋯ + a k M k M k − 1 )   m o d   M x = (a_1M_1M_1^{-1}+a_2M_2M_2^{-1}+\cdots+a_kM_kM_k^{-1}) \ mod \ M x=(a1M1M11+a2M2M21++akMkMk1) mod M
其中 M i = M / m i M_i=M/m_i Mi=M/mi,而 M i − 1 M_i^{-1} Mi1表示模 m i m_i mi的逆元。

证明过程:待理解中。。。

2 模板

暂无。。。

3 工程化

暂无。。。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

YMWM_

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值