acwing算法基础之动态规划--DP习题课1

123 篇文章 1 订阅

1 基础知识

暂无。。。

2 模板

暂无。。。

3 工程化

题目1:最长严格上升子序列,要求时间复杂度为 O ( n l o g n ) O(nlogn) O(nlogn)

解题思路:保存每个长度下的最小的结尾元素值,遍历数组元素时,通过二分找到它,然后更新它即可,返回len。

该算法的关键步骤如下:

  1. 定义向量vecvec[i]表示所有长度为i+1的上升子序列的集合,该集合当中最后一个元素最小的那个值。很显然可以知道,vec中的元素满足严格单调递增(根据vec[i]的定义即可得到)。
  2. 遍历原先的数组中的每一个元素x,在vec中找到>=x的第一个元素的下标idx:如果这个下标不存在,往vec中插入元素x;否则vec[idx] = x

C++代码如下,

#include <iostream>
#include <vector>

using namespace std;

const int N = 1e5 + 10;
int n;
int a[N];

int main() {
    
    cin >> n;
    for (int i = 0; i < n; ++i) cin >> a[i];
    
    vector<int> vec;
    for (int i = 0; i < n; ++i) {
        //在vec中找到>=a[i]的第一个元素的下标
        int idx = lower_bound(vec.begin(), vec.end(), a[i]) - vec.begin();
        if (idx == vec.size()) {//表示没有找到
            vec.emplace_back(a[i]);
        } else {
            vec[idx] = a[i];
        }
    }
    
    cout << vec.size() << endl;
    
    return 0;
}

题目1扩展1:求最长严格下降子序列。要求算法时间复杂度为 O ( n l o g n ) O(nlogn) O(nlogn)

解题思路:将原先数组reverse一遍,等价于题目1。

题目2:最小编辑距离。有三种操作,插入、删除和替换,求将字符串a变成字符串b的最小操作次数。

解题思路:DP,考虑最后一次操作次数。

状态定义,f[i][j]:将字符串a的前i位变为字符串b的前j位的最小操作次数。

状态转移,有

  1. 最后一次操作是插入操作,则说明操作前已经匹配了字符串b的前j-1位,故f[i][j - 1] + 1
  2. 最后一次操作是删除操作,则说明操作前字符串a的前i-1位已经匹配了字符串b的前j位,故f[i - 1][j] + 1
  3. 最后一次操作是替换操作,则说明操作前字符串a的前i-1位已经匹配了字符串b的前j-1位,但可能a[i] == b[j],则f[i - 1][j - 1];否则f[i - 1][j - 1] + 1

初始化,f[i][0]表示将a的前i位变成b的前0位,则值为if[0][j]表示将a的前0位变成b的前j位,则值为j

最终答案,f[n][m]

C++代码为,

#include <iostream>

using namespace std;

const int N = 1010;
int n, m;
char a[N], b[N];
int f[N][N];

int main() {
    cin >> n >> a + 1;
    cin >> m >> b + 1;
    
    
    for (int i = 0; i <= n; ++i) f[i][0] = i;
    for (int j = 0; j <= m; ++j) f[0][j] = j;
    
    for (int i = 1; i <= n; ++i) {
        for (int j = 1; j <= m; ++j) {
            f[i][j] = min(f[i-1][j] + 1, f[i][j-1] + 1);
            if (a[i] == b[j]) f[i][j] = min(f[i][j], f[i-1][j-1]);
            else f[i][j] = min(f[i][j], f[i-1][j-1] + 1);
        }
    }
    
    cout << f[n][m] << endl;
       
    return 0;
}

题目3:编辑距离。

思路:就是将题目2的实现套用过来,调用多次即可。

C++代码如下,

#include <iostream>
#include <cstring>

using namespace std;

const int N = 1010, M = 20;
int n, m;
char str[N][M];
int f[M][M];

int get_dis(char a[], char b[]) {
    int la = strlen(a + 1), lb = strlen(b + 1);
    
    for (int i = 0; i <= la; ++i) f[i][0] = i;
    for (int j = 0; j <= lb; ++j) f[0][j] = j;
    
    for (int i = 1; i <= la; ++i) {
        for (int j = 1; j <= lb; ++j) {
            f[i][j] = min(f[i-1][j] + 1, f[i][j-1] + 1);
            f[i][j] = min(f[i][j], f[i-1][j-1] + (a[i] != b[j]));
        }
    }
    return f[la][lb];
}

int main() {
    cin >> n >> m;
    for (int i = 1; i <= n; ++i) cin >> str[i] + 1;
    
    for (int j = 1; j <= m; ++j) {
        int limit;
        char b[20];
        cin >> b + 1 >> limit;
        
        int res = 0;
        for (int i = 1; i <= n; ++i) {
            if (get_dis(str[i], b) <= limit) res += 1;
        }
        cout << res << endl;
    }
    
    return 0;
}

题目4:整数划分问题。给定整数 n n n,求有多少种划分方案。比如31+1+11+23这3种划分方案。

思路:它属于计数类DP。

(解法一)

状态定义,f[i][j]:从前i个数中选,总和为j的方案数。

考虑最后一次选法,状态转移,有,

  1. 不选第i个数,即f[i-1][j]
  2. 选1个第i个数,即f[i-1][j-i]
  3. 选2个第i个数,即f[i-1][j - 2 * i]
    ……
  4. 选s个第i个数,即f[i-1][j - s * i]

故,综合上述,f[i][j]状态转移为,

f[i][j] = f[i-1][j] + f[i-1][j-i] + f[i-1][j - 2 * i] + f[i-1][j - 3 * i] + ... + f[i-1][j - s * i]

考虑状态f[i][j-i]的状态转移,有

f[i][j-i] = f[i-1][j-i] + f[i-1][j - 2 * i] + f[i-1][j - 3 * i] + ... + f[i-1][j - s * i]

f[i][j]的状态转移可以写成,

f[i][j] = f[i-1][j] + f[i][j-i]

初始化,f[0][0] = 1

同时利用滚动数组优化,可以有如下C++代码,

#include <iostream>

using namespace std;

const int N = 1010, mod = 1e9 + 7;
int n;
int f[N];

int main() {
    cin >> n;
    
    f[0] = 1;
    
    for (int i = 1; i <= n; ++i) {
        for (int j = i; j <= n; ++j) {
            f[j] = (f[j] + f[j-i]) % mod;
        }
    }
    
    cout << f[n] << endl;
    
    return 0;
}

(解法二)
状态表示f[i][j]:总和是i,有j个数,的所有方案数。

f[i][j]的状态转移,有,

  1. 拆分出来的数的最小值是1,即·f[i-1][j-1]
  2. 拆分出来的数的最小值大于1,即f[i-j][j]

f[i][j]的状态转移为,

f[i][j] = f[i-1][j-1] + f[i-j][j]

初始化,f[0][0] = 1

最终答案,f[n][1] + f[n][2] + ... + f[n][n]

C++代码如下,

#include <iostream>

using namespace std;

const int N = 1010, mod = 1e9 + 7;
int n;
int f[N][N];

int main() {
    cin >> n;
    f[0][0] = 1;
    
    for (int i = 1; i <= n; ++i) {
        for (int j = 1; j <= i; ++j) {
            f[i][j] = (f[i-1][j-1] + f[i-j][j]) % mod;
        }
    }
    
    int res = 0;
    for (int j = 1; j <= n; ++j) res = (res + f[n][j]) % mod;
    
    cout << res << endl;
    
    return 0;
}
  • 24
    点赞
  • 25
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

YMWM_

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值