朋友前几天问我都是怎么读文献的。我平时文献读的不算少,找研究方向、写文章,或者偶尔收到老师分享的文章的时候都有读,但是面对她这个问题,一下还真给我问住了,不知道该从哪聊起。
如何读文献,这是个非常重要也非常实际的问题,研究生(本科生)阶段阅读文献是学术成长的关键一步,方法对了,总能事半功倍;方法错了,容易陷入“看了很多但没记住”“越看越乱”的状态。下面来写写我的经验和教训,还有一些小tips,用以提醒“低效”读文献的自己,如果有不全面的也欢迎补充~
一、根据阅读文献的目的来看
首先,不同阶段、不同目标,阅读文献的方式肯定是不一样的:
目的 | 阅读重点 | 阅读方式 |
---|---|---|
初步了解研究方向 | 看“新闻”、综述、权威文献 | 粗略通读,培养兴趣,建立大局 |
确定选题/构建理论框架 | 重点看经典文献 | 细读摘要、引言、讨论部分 |
写论文 | 查找方法、数据、对比研究 | 精读方法与结果 |
跟进前沿 | 看最新期刊文章 | 快速扫读,关注创新点 |
💡初步了解研究方向,看我想不想做
如果只是想找一个研究方向或者已有了大致的研究方向,还没确定具体做什么,怎么做,这个时候可以广泛地粗读,找有意思的内容读,不必局限于细节。
比如本科我第一次接触大创项目的时候,研究内容是土壤微塑料,微塑料跟我的专业完全不相关,这个时候X导就分享给我了很多关于微塑料的新闻,没看错,不是文献,只是一些科普性的新闻,很生动也很有趣,他希望能通过这些“活泼”、“没那么学术”的内容来引起我的兴趣,确实也达到了这个效果,我看完之后觉得非常有研究的价值,于是也“心甘情愿”地投入进去了。
图为X导发给我的新闻
所以在最初了解研究方向的时候,确实可以通过这样的方式来让自己轻松地接受,慢慢接触这个领域。当然,除了新闻,我也找了很多综述性的文章,这样的文章可以让你迅速、比较全面地了解研究方向。
🌱 在确定选题之后,看我应该怎么做
如果已经有了确定而具体的研究方向或题目,接下来的文献阅读,主要是为了:
-
明确别人做过什么、用了什么方法,结果怎样;
-
找出还没有人解决的问题(研究空白/不足);
-
构建自己的理论与方法框架,为我写论文做铺垫。
那么就可以找一些针对性的、经典的文章,读这些文章的摘要、引言、讨论部分。
为什么要看“经典文献”?
经典文献 = 被引用次数多、在本领域常被提到、影响力大的研究文章
它们能帮我了解这个研究领域最重要的观点、方法和模型,建立起我的研究基底。
怎么找?
-
用 Google Scholar、Web of Science 、CNKI等按关键词检索;
-
按“引用次数”排序;
-
看综述文章里引用最多的几篇;
-
看近年发在领域顶刊上的“Highly Cited Papers”。
为什么重点看摘要、引言、讨论部分?
这些部分可以帮助我快速抓住每篇文献的核心信息:
部分 | 阅读目的 |
---|---|
摘要 | 快速判断这篇文章研究了什么、方法和结论 |
引言 | 搞清楚这篇文章为什么做这项研究(研究动机、研究空白) |
讨论 | 看作者对结果的解释、与他人研究的比较、对未来研究的建议 |
读的时候也要做好笔记,特别是引言和讨论部分,是构建理论基础和研究意义时的重要素材。
举个栗子
我在做“基于支持向量机(SVM)方法做xx流域的土地覆盖分类”这个研究时,找到一篇高被引文章,假设题为:
“Time series Sentinel-2 data for land cover classification using SVM and random forest in alpine areas”
那就可以这么读:
-
摘要:看看作者用的什么数据?什么时间序列特征?NDVI还是其他?用了哪些分类器?研究区是哪里?
-
引言:他们为什么要做时间序列?原来的方法有哪些缺陷?他们的研究填补了哪些空白?
-
讨论:分类精度高吗?哪几类地物最容易混淆?他们觉得还有什么改进空间?有没有提到DEM或水体指数等你也考虑使用的特征?
这些都可以直接给我的论文写作中的问题提出+文献支持+方法论铺垫。
具体应该怎么做呢?
整体上来说,我们可以按这个小流程来:
-
列出关键词 → 搜相关文献(比如“Sentinel-2”、“time series”、“land cover”、“SVM”)
-
筛选出5–10篇高相关、高质量文献
-
做详细阅读笔记(用表格或Notion或Zotero整理)
-
在自己的文献综述/论文绪论中引用、比较、总结
-
从讨论中找灵感:别人做得不够好/没做的地方,就是我的创新点,我可以补充的地方!
🧭 写论文时,看我怎么写
写论文过程中读文献,这时候已经定好题目、可能也开始写初稿了,那我们读文献的目标就从“了解方向”转向了更实战、实用的——
-
找方法:我该怎么做?别人是怎么做的?
-
找数据:我用的数据是否合理?有没有数据来源可以参考?
-
找对比:别人做得怎么样?我和他们的结果相比如何?
-
找支撑:我说的话有没有文献支撑?有没有权威背书?
总而言之,言而总之,就是一句话,缺什么找什么。
还是拿“土地覆盖分类”研究为例,我用支持向量机(一种分类器)分类,就去找用支持向量机方法分类的文章,看看别人这么做的,这个方法好不好,好在哪,坏在哪;缺数据,就看看同类文章用的什么数据,合不合理,有没有来源参考等等。
边读边做好笔记,甚至是边读边写自己的论文,具体用我“土地覆盖分类”研究来列几个栗子参考:
方法要怎么写?读“方法”部分:
精读高相关文献的 Methodology 部分,抄思路,把他们的方法和我的方法一一对应,照着写+对照优化。
-
他们是怎么采样的?
-
用了哪些遥感指数(NDVI/MNDWI/DEM)?
-
用的哪种分类器(SVM、RF、XGBoost)?参数设置如何?
-
如何划分训练集和验证集?
-
他们用什么方式进行精度验证(混淆矩阵、Kappa、F1-score)?
数据怎么选?读“研究区域和数据”部分:
-
用的是 Sentinel-1 还是 Sentinel-2,有没有用 DEM、土地利用产品等辅助数据?
-
用的是哪个月份的影像?有没有时序合成?
-
空间分辨率是多少?
有时有些数据会在正文/附录/脚注给出数据源网址或下载方法,如果我也想用这些数据,可以去下载,去找。
我的结果好不好?如何展现结果?读“结果与讨论”部分:
-
看他们的精度是多少?对哪类地物分类效果最好?
-
有没有可视化图(分类图、精度柱状图等)?可以借鉴图表形式(这个很实用※)
-
他们有没有讨论哪些地类容易混淆?分析原因的时候可以引用。
-
有无对比不同算法的性能差异?可以引用来做补充。
毕竟写我的结果分析和讨论部分时,肯定要引用对比研究的,所以边读边积累边引用,是非常棒的选择~
构建支撑,润色逻辑,读“讨论与引言”部分:
-
看类似文章如何解释研究结果(为什么xx分类器/xx方法表现最好?)
-
有哪些研究空白和未来建议(我也可以借来当作“研究意义”)
-
他们用了哪些经典文献来支撑自己的论点?我也可以借用。
总之写引言、讨论、结论部分时一定要引用相关成果来增强说服力,引用的这些内容就是我们现在读的内容。
再举个栗子:我在写微塑料论文时的思路
问题 | 查阅文献内容 |
---|---|
微塑料提取方法对吗? | 看“方法”部分,是否有漂洗、过滤、显微镜目视、拉曼/傅里叶等步骤 |
土壤中MPs的常见聚合物种类? | 看“结果”部分,有没有 PS、PE、PET 等占比 |
哪类土地微塑料多?为什么? | 看“讨论”部分,看他们怎么解释人类活动影响 |
我的数据靠谱吗? | 看“数据来源”部分,是否有同样的采样深度、质量保证、粒径划分标准 |
✨ 跟进前沿研究,看我想了解什么
如果只是想“紧跟研究热点”和“发现创新灵感”,这种情况一般是针对导师分享(定向转发)给我的文章(嘘),当然也适用于以下情况:
-
想看看最新的研究趋势,大家都在研究什么方向?
-
想为论文加点“创新点”,看看别人有哪些新思路?
-
准备开题/写文献综述,要显得“与时俱进”~
-
或者做完初稿,想找最近类似的研究作对比和补充
阅读方式:快速扫读,重点关注这几个地方
阅读部分 | 看什么内容? | 目的 |
---|---|---|
标题 + 摘要 | 研究主题、方法、数据、结论 | 判断是否与你研究相关、有新意 |
引言(快速扫) | 研究背景 + 创新点(通常是最后1段) | 了解作者如何提出问题、有无研究空白 |
图表/流程图 | 看方法流程、特征组合、结果展示 | 图快过文,一眼掌握思路 |
讨论/结论 | 创新点在哪里、结果说明什么? | 帮你对比、补充和启发灵感 |
📌 不要每字每句都读,而是像侦探一样抓住关键词,快速判断值不值得深读(bushi)
🪄 这种读法像“扫货”——
-
去逛超市找灵感,不是每样都买,但要知道什么在热卖,什么值得回家研究;
-
扫读多篇 → 精读几篇 → 为论文“点亮新思路”~
二、文献阅读的基本流程
上面是根据阅读目的来针对性地读,下面记录文献阅读的一个基本流程:
1. 确定关键词
简单说就是”想看什么文章就搜什么关键词“,不过这句说起来简单,实际做起来可能总是不尽人意,比如你把自己那长达一句话的选题一字不漏地输入搜索框,回车,结果发现大概率就几条,还掺杂着许多和你不相干的研究。
关键词不止局限于选题名,也来自以下几个地方:
来源 | 示例 |
---|---|
我的研究题目 | 从研究问题中提取核心概念,确保关键词准确反映研究主题 |
我关注的研究对象/区域 | “青海湖流域”,“黄土高原”等 |
我用的方法/技术 | “支持向量机”,“随机森林”,“时序特征”,“NDVI”等 |
我用的数据源 | “Sentinel-1”,“Sentinel-2”,“DEM”等 |
我研究的目标/问题 | “提高分类精度”,“地物区分度”,“小样本分类”等 |
从这些来源中分离出关键词,用这些词在 Google Scholar、CNKI、Web of Science等平台上搜索文章;
又或者把他们分为四类:研究对象、研究区域、数据来源、研究方法/技术,然后进行排列组合,比如”黄土高原微塑料“(研究区域+研究对象)。
关键词搜索技巧:
技巧 | 说明 | 示例 |
---|---|---|
引号 “ ” | 精确匹配短语 | "land cover classification" |
AND | 包含多个关键词 | Sentinel-2 AND NDVI AND SVM |
OR | 表示任意一个都可 | SVM OR Random Forest |
通配符 * | 匹配多个词尾变化 | classif* 可匹配 classification/classifier |
限定时间 | 最好是近几年文献 | 选“2020–2024” |
实战小建议:
-
不要只用中文数据库,试着去 Web of Science、Google Scholar 搜英文关键词,会多很多好文章。
-
先搜再改关键词组合:搜不到满意的,换词再来,逐步逼近。
-
看别人的关键词:一篇好文里,“关键词(Keywords)”部分也很值得抄!
2. 先看综述(Review)文章
综述能帮你抓住一个领域的发展脉络、研究热点、经典模型、常用数据。相当于搭框架。但是综述类文章往往是比较枯燥的,可以用ai帮忙看~
3. 阅读原始研究(Research Articles)
顺序如下:
-
标题、作者、期刊、时间:判断是否权威、相关,可能会有一些杂志类的文章,非期刊参考性不大;时间也很重要,对于一些注重创新的方法,就不要再参考那些比你年纪都老的文章了;
-
摘要(Abstract):看研究目的、方法、结果;
-
引言(Introduction):了解研究背景、问题、创新点;
-
方法(Methodology):看是否用到你需要的算法或数据处理手段;
-
结果 & 讨论(Results & Discussion):看实验表现如何,有哪些发现;
-
结论(Conclusion):总结研究贡献,有没有局限;
-
参考文献:顺藤摸瓜,找到更多相关文献。
这类文章可以快速读,也可以精读,具体方法:
✅ 快速阅读:扫雷式阅读
先浏览十几篇文献,只看标题+摘要+图表+结论,筛选出最有价值的文章。
✅ 精读:笔记式阅读
对重点文章进行深度阅读,用电子文档做好笔记(举个模板栗子)。
项目 | 内容 |
---|---|
文章标题 | |
作者、发表时间、期刊 | |
研究目的 | |
数据来源 | |
方法/模型 | |
主要结论 | |
优点 | |
局限性 | |
对我研究的启发 |
三、辅助工具推荐
-
📚 Zotero / EndNote / NoteExpress:管理文献、插入引用、分类归档,其中Zotero是我在用的,感觉还可以,对中文文献不太友好,英文很好用。
-
🔍 Google Scholar / Web of Science / CNKI:查文献主力是知网,我的文献来源就是看一篇文献,然后从参考文献中找下一篇,再从下一篇找下下篇...
-
📑 ResearchRabbit:可视化追踪一条文献的前后发展路径(我只是听过,并没有用过)
-
🧠 Obsidian / Notion:适合构建自己的知识库
最后,给自己一点小小的建议:不要追求“看很多”,而是要“看懂几篇”,深入理解比数量更重要。