2025-0302学习记录7——遥感影像分类方法

最近玩的太狠了,适度学习...劳逸结合!


根据分类单元的不同,传统的遥感影像分类方法可分为面向像元和面向对象的分类。

面向像元的分类方法

1.1 定义

面向像元的分类方法(Pixel-based Classification, PBC),以单个像元的光谱特征为主要依据进行影像的分类,这种方法主要依赖于像元的光谱特征,而不考虑空间信息(如形状、纹理等),适用于低分辨率或中分辨率遥感影像。高分辨率遥感影像的光谱信息相对匮乏,纹理、几何等空间信息更加丰富;基于像元的方法解译速度较慢,容易产生椒盐效应,因此该方法不适用于高分辨率遥感影像分类。

像元的光谱特征:是指遥感影像中每个像元在不同波段上的反射率或辐射值。简单来说,就是传感器接收到的各个波段的电磁波信息,用于区分不同的地物类型。(详见学习记录10)

椒盐效应:由于分类方法仅依赖像元的光谱特征,导致分类结果出现大量孤立、分散的小斑块,使得图像看起来像撒上了黑白的“椒盐”,影响分类的连贯性和可读性。

1.2 特点

  1. 单像元决策:每个像元的类别是独立确定的,仅基于其光谱信息(即各波段的反射率值)。
  2. 依赖光谱特征:通常使用各个波段的灰度值或经过计算的光谱指数进行分类。
  3. 适用于多光谱和高光谱数据:尤其是在影像分辨率较低时,面向像元的方法仍然能有效分类。
  4. 忽略空间特征:没有考虑像元之间的空间关系、形状或纹理特征,因此在高分辨率影像中容易出现“椒盐噪声”现象。

1.3 主要算法

  • 监督分类(Supervised Classification)
    • 最大似然分类(Maximum Likelihood Classification, MLC):基于统计概率进行分类,假设各类别的光谱特征服从正态分布。
    • 支持向量机(Support Vector Machine, SVM):使用超平面划分数据,适用于高维数据分类。
    • 随机森林(Random Forest, RF):通过多个决策树进行投票,提高分类精度。
    • 人工神经网络(Artificial Neural Network, ANN):基于神经网络的自学习能力进行分类。
  • 非监督分类(Unsupervised Classification)
    • K均值聚类(K-Means):基于数据点的相似性进行自动分类,不需要事先提供训练样本。
    • ISODATA(Iterative Self-Organizing Data Analysis):与K均值类似,但可以动态调整聚类数量。

1.4 适用场景

  • 低分辨率和中分辨率遥感影像(如MODIS、Landsat等)。
  • 对光谱差异较大的地物(如水体、植被、裸地等)进行分类时效果较好。
  • 适用于传统的土地利用/覆盖分类(LUCC)任务。

1.5 局限性

  • 忽略空间信息:导致高分辨率影像分类精度下降。
  • 易受噪声影响:可能出现“椒盐效应”(即分类结果呈现零星分布)。
  • 光谱混合问题:对于具有相似光谱特征的地物(如不同类型的植被),分类精度可能较低。

面向对象的分类方法

2.1 定义

面向对象的分类方法(Object-Based Image Analysis, OBIA)以同质像元组成的对象为分类单元,对光谱、纹理和形状等特征进行提取进而分类,充分利用了像元之间的空间关系,是一种更适合于高分辨率遥感影像的分类方法。

2.2 特点

  1. 以对象为单位进行分类:不像传统方法逐个像元分类,OBIA 先进行影像分割,将相邻像元合并成对象,再基于对象的特征进行分类。

  2. 结合多种特征光谱特征:均值、最大值、最小值、标准差等(如红光、近红外等波段的平均值)。形状特征:面积、周长、长宽比、圆度等(如建筑物通常是矩形,而湖泊边界较复杂)。纹理特征:均匀性、对比度、方向性等(如森林具有较均匀的纹理,而城市区域较复杂)。空间关系:对象与周围对象的拓扑关系(如建筑物通常靠近道路,水体通常位于低洼地区)。

  3. 减少椒盐效应:由于分类是基于区域而非单个像元,因此分类结果更加平滑,避免孤立像元被误分类的问题。

  4. 适用于高分辨率影像:在高分辨率遥感影像中,单个像元可能不足以描述完整地物,而面向对象方法能够更好地提取地物信息。

2.3 主要算法

(1)影像分割方法

影像分割是 OBIA 的关键步骤,常见方法包括:

  • 多尺度分割(Multiresolution Segmentation):基于光谱相似性进行区域增长,适用于不同尺度的地物。
  • 分水岭分割(Watershed Segmentation):将影像视为高程模型,基于梯度变化分割地物边界。
  • 均值漂移分割(Mean Shift Segmentation):基于密度估计进行自适应平滑,适用于地物边界模糊的影像。

(2)分类方法

分割后,分类可采用机器学习或规则集方法,例如:

  • 决策树(Decision Tree):基于设定的规则进行分类,适用于规则明确的地物。
  • 随机森林(Random Forest, RF):集成多个决策树,提高分类精度和泛化能力。
  • 支持向量机(Support Vector Machine, SVM):适用于复杂地物分类,能够有效处理小样本高维数据。
  • K 近邻(K-Nearest Neighbors, KNN):基于对象相似性分类,计算量较大。
  • 深度学习(如 CNN):近年来用于遥感影像分类,能够自动学习特征,提高精度。

2.4 适用场景

  • 城市地物分类(建筑物、道路、水体、绿地等),能够保持地物边界完整性。
  • 植被分类(区分不同植被类型,如阔叶林、针叶林、灌木丛等)。
  • 农作物分类(利用形状和纹理特征区分不同作物)。
  • 水体监测(识别河流、湖泊、水库等水体,减少混杂像元影响)。
  • 灾害监测(如火灾、洪水、泥石流等灾害评估,提高准确性)。

2.5 局限性

  1. 计算量大,参数调整复杂:影像分割和分类计算成本较高,尤其在大规模遥感数据处理中需要较长时间。
  2. 依赖分割质量:影像分割的尺度参数、光谱相似性等设定不当,可能导致过度分割或欠分割,影响分类结果。
  3. 不适用于低分辨率影像:低分辨率影像中,像元本身已足以代表完整地物,使用 OBIA 可能没有优势。
  4. 需要高质量训练样本:分类精度受训练数据影响较大,如果训练样本质量不高,可能导致分类错误。

3 二者比较

像素级分类就像用“逐点填色”的方式画画,每个像素都被单独赋予类别,容易出现“椒盐噪声”
面向对象分类更像是先画出轮廓(分割),再对每个整体对象进行分类,更符合人眼的认知

面向像元分类像是盲人摸象,只能感知局部颜色(光谱),但不知道整体形状和关系
面向对象分类像是站在远处看整幅画,不仅能看到颜色,还能看出形状、纹理和空间关系

比较项面向像元分类面向对象分类
处理单元单个像元(Pixel)多个像元组成的对象(Object)
主要依据像元的光谱特征(波段反射率)光谱 + 形状 + 纹理 + 关系
适用影像低/中分辨率影像(如 Landsat, Sentinel-2)高分辨率影像(如 WorldView, UAV 影像)
计算复杂度计算较简单计算较复杂,需要调整分割参数
适用场景大尺度土地利用分类(如耕地、森林、水体)复杂地物分类(如城市建筑类型、不同植被)
误分类情况容易产生椒盐效应结果更平滑,分类精度更高

4 实例分析

基于 Sentinel-2 数据对青海湖流域进行地表分类:面向像元 vs 面向对象

假设目标是使用 Sentinel-2 影像对青海湖流域进行土地利用/覆盖(LULC)分类,将其划分为水体、裸地、草地、农田、建筑等类别。以下是两种方法的具体流程及对比。

4.1 应用面向像元的方法

面向像元的方法是逐像元进行分类,主要依赖光谱特征,不考虑像元间的空间关系。

步骤:

  1. 数据获取

    • 下载 Sentinel-2 影像(L1C 或 L2A),选取覆盖青海湖的影像,并进行辐射校正、大气校正(如 Sen2Cor 处理)。
    • 选取多个波段(如 B2 蓝、B3 绿、B4 红、B8 近红外等),并计算植被指数(NDVI)、水体指数(MNDWI)等增强信息。
  2. 数据预处理

    • 影像裁剪到研究区范围(青海湖流域)。
    • 可能需要进行云掩膜处理,去除云和云影干扰。
    • 影像重采样至统一分辨率(如 10m)。
  3. 样本选择

    • 通过 Google Earth 或已有土地利用数据标注训练样本(如水体、裸地、草地、农田、建筑)。
    • 采用 ROI(Region of Interest)方法在 ArcGIS、ENVI 或 GEE 中采集训练数据。
  4. 分类模型选择

    • 采用监督分类方法,如最大似然分类(MLC)、支持向量机(SVM)、随机森林(RF)等进行逐像元分类。
    • 也可以使用无监督分类(如 K-means、ISODATA),根据光谱特征聚类后再人工赋值类别。
  5. 分类后处理

    • 进行分类精度评估(基于混淆矩阵、总体精度、Kappa 系数等)。
    • 可能需要应用多数滤波或形态学处理,去除椒盐效应。

4.2 应用面向对象的方法

面向对象的方法先进行影像分割,将相似的像元合并成对象,然后基于对象的光谱、形状、纹理等特征进行分类。

步骤:

  1. 数据获取(与 PBC 方法相同)

    • 获取 Sentinel-2 影像,进行预处理(辐射校正、大气校正、裁剪、云掩膜)。
  2. 影像分割

    • 采用多尺度分割方法(如 eCognition、GEE、ArcGIS)对影像进行分割,生成一系列地物对象。
    • 选择合适的分割尺度:
      • 若分割尺度过大,不同类别可能被混合。
      • 若分割尺度过小,可能导致对象数量过多,影响计算效率。
    • 根据研究需求,调整合适的光谱相似度、形状参数、紧致度等。
  3. 特征提取

    • 计算每个对象的光谱特征(均值、标准差等)。
    • 计算形状特征(面积、边界复杂度、长宽比等)。
    • 计算纹理特征(灰度共生矩阵 GLCM 统计特征,如对比度、均匀度)。
    • 计算空间关系特征(对象之间的邻近关系,如建筑是否紧邻道路)。
  4. 样本选择

    • 选择训练样本(方法与面向像元分类相似,但样本单位为对象而非单个像元)。
  5. 分类模型选择

    • 采用决策树、随机森林、支持向量机等机器学习方法进行分类。
    • 也可以基于规则集(Rule-Based Classification),例如:
      • 如果对象 NDVI > 0.3 且形状规则 → 草地。
      • 如果对象 MNDWI > 0.5 且靠近湖泊 → 水体。
  6. 分类后处理

    • 进行精度评估,并可进行对象合并、滤波等优化处理。

4.3 实例总结

  • 若 Sentinel-2 数据分辨率较低(如 20m 波段),地物边界较模糊,适合面向像元的分类方法。
  • 若 Sentinel-2 数据为 10m 波段,研究区内地物类型较复杂(如水体、裸地、草地混合),面向对象方法能更好地减少分类误差,提高精度。
  • 如果计算资源有限,可选择面向像元方法;如果追求高精度分类(如城市地物分类),建议采用面向对象方法。

5 遥感影像分类方法的国内外研究现状

遥感影像分类是遥感应用中的核心任务,广泛应用于土地利用/覆盖分类(LULC)、生态环境监测、农业监测、城市规划等领域。随着遥感数据质量的提升和计算能力的增强,遥感分类方法不断发展,主要包括传统分类方法(面向像元的分类)面向对象的分类(OBIA)以及基于深度学习的分类方法

5.1 传统分类方法(面向像元分类)

(1)国外研究现状

早期的遥感分类主要依赖面向像元的统计方法,如最大似然分类(MLC)支持向量机(SVM)、随机森林(RF)等。这些方法假设像元的光谱信息能代表地物类别,但由于忽略了空间信息,导致分类精度受限。

近年来,机器学习方法在遥感分类中得到广泛应用。例如:

  • 支持向量机(SVM)被广泛应用于高分辨率遥感影像分类(Mountrakis et al., 2011)。
  • 随机森林(RF)因其抗过拟合能力和高分类精度,被用于多光谱和高光谱影像分类(Belgiu & Drăguţ, 2016)。
  • AdaBoost、K近邻(KNN)等方法也用于不同场景的分类任务(Foody, 2002)。

然而,这些方法仍然存在椒盐效应问题,导致分类结果较为破碎,尤其是在高分辨率影像中。

(2)国内研究现状

国内研究主要围绕提高传统方法的分类精度展开。例如:

  • 研究者改进最大似然法,结合地形和地物先验知识,提高山区地物分类精度(王劲松等,2020)。
  • 支持向量机(SVM)和随机森林(RF)在土地利用分类中得到了较多应用,研究者结合光谱指数(NDVI、MNDWI 等)提高分类精度(赵英等,2019)。
  • 近年,一些研究尝试使用组合分类器(如 SVM + RF)来提高分类稳定性(李强等,2021)。

尽管面向像元的分类方法仍被广泛应用,但其对高分辨率影像的适用性有限,因此研究重心逐渐向面向对象的分类深度学习分类转移。

5.2 面向对象的分类(OBIA)

(1)国外研究现状

面向对象分类方法(OBIA)于 2000 年左右兴起(Blaschke, 2010),其核心思想是先进行影像分割,再基于对象特征进行分类。OBIA 相较于传统方法,在高分辨率影像分类中表现更优。例如:

  • eCognition 软件成为 OBIA 研究的主要工具,广泛应用于城市地物分类、林地分类等领域(Blaschke & Lang, 2006)。
  • 国外研究者提出多种影像分割算法,如多尺度分割(Multiresolution Segmentation)分水岭分割(Watershed Segmentation),并结合机器学习分类器(RF、SVM)提高分类精度(Drăguţ et al., 2014)。
  • OBIA 被用于灾害监测(火灾、洪水等),如 Liu et al. (2018) 采用 OBIA 结合光谱指数对森林火灾区域进行了高精度分类。

(2)国内研究现状

国内在 OBIA 领域的研究起步稍晚,但近年来发展迅速。例如:

  • 研究者利用 OBIA 进行城市土地利用分类,结合高分辨率影像(如 GF-2、高光谱数据)提高分类精度(李涛等,2019)。
  • 农业监测方面,研究者利用 OBIA 方法提取农作物种植结构,并结合深度学习提高识别能力(张勇等,2022)。
  • 生态环境监测领域,OBIA 被用于提取草地、裸地、水体等地物,并与 GIS 结合进行动态变化分析(王芳等,2021)。

虽然 OBIA 在高分辨率影像中的表现优异,但其计算成本较高,参数调整复杂,成为研究中的主要挑战。

5.3 基于深度学习的分类方法

(1)国外研究现状

近年来,深度学习(DL)在遥感影像分类中取得突破性进展。常见方法包括:

  • 卷积神经网络(CNN):用于提取影像的深层特征,提高分类精度(Zhang et al., 2016)。
  • 循环神经网络(RNN):适用于时序遥感数据分类,如农业作物分类(Ienco et al., 2017)。
  • Transformer 模型:最近在遥感分类中取得显著进展,特别适用于长距离依赖特征的建模(Dosovitskiy et al., 2020)。

国外研究者开发了多种遥感深度学习框架,如:

  • DeepLabV3+、U-Net 等语义分割模型在地物分类中的应用(Chen et al., 2018)。
  • 结合 LSTM 进行时间序列分类,提高农作物分类精度(Russwurm et al., 2019)。

(2)国内研究现状

国内研究者也积极探索深度学习在遥感分类中的应用:

  • CNN 在高分辨率遥感影像分类中的应用:如利用 ResNet、DenseNet 提取特征,提高分类精度(王伟等,2021)。
  • 结合 OBIA 进行分类:如 OBIA + CNN 方法,先进行影像分割,再使用深度学习进行分类,提高计算效率(张鹏等,2022)。
  • 多源数据融合:结合多光谱、SAR(合成孔径雷达)、LiDAR 数据,提高遥感分类的综合能力(李娜等,2023)。

尽管深度学习在遥感分类中表现优异,但其计算资源需求高、可解释性差,仍然是当前研究的热点问题。

5.4 研究趋势与展望

  1. 多源数据融合:结合光学、SAR、高光谱、激光雷达等多种遥感数据,提高分类精度。
  2. 深度学习与 OBIA 结合:利用深度学习优化影像分割,提高面向对象分类的智能化水平。
  3. 自监督学习与少样本学习:解决遥感影像分类中高质量样本标注困难的问题。
  4. 云计算与大数据分析:GEE(Google Earth Engine)、HPC(高性能计算)等技术的应用将进一步推动遥感分类的高效化和自动化。

5.5 结论

遥感影像分类方法经历了从传统面向像元分类(MLC、SVM、RF),到面向对象分类(OBIA),再到深度学习方法(CNN、Transformer)的发展。传统方法在低分辨率影像中仍具备应用价值,而 OBIA 适用于高分辨率影像,深度学习方法则表现出更强的特征提取能力。未来的发展方向将围绕多源数据融合、智能分类方法及计算资源优化展开。

图片均来自网络,如有侵权,请联系删除。

### 回答1: Google Earth Engine是一个基于云计算的地球观测数据分析平台,它提供了强大的工具和资源来对全球范围内的环境和地球现象进行监测、分析和预测。在水质反演方面,Google Earth Engine提供了多种方法和数据源来评估水体的质量和污染程度。 首先,Google Earth Engine整合了多源遥感数据,如卫星图像、高光谱数据和激光雷达数据,可以用来获取水体表面的光谱信息。通过光谱特征分析和物理模型反演,可以推测水体中的悬浮物、叶绿素和溶解有机物等指标,以评估水质的污染程度和水生态系统的健康状况。 其次,Google Earth Engine也提供了多种水质参数模型,如总悬浮物浓度、叶绿素-a浓度和水体温度等,可以通过遥感数据与地面观测数据进行校正,并预测整个水体的水质状态。这些模型和工具可以为环境管理和水资源保护部门提供准确和实时的水质指标,帮助监测水环境污染和制定相应的保护措施。 此外,Google Earth Engine还提供了遥感影像处理和数据分析的强大功能,如数据可视化、时间序列分析、空间模式识别等。通过这些功能,可以更好地理解和分析水体的空间分布特征、时序变化规律以及潜在的污染源等,从而提供参考和支持环境保护和可持续发展的决策。 综上所述,Google Earth Engine水质反演利用丰富的遥感数据、模型和分析工具,可以帮助我们监测和评估水体的质量和污染情况,为水资源管理和环境保护提供科学依据和技术支持。 ### 回答2: Google Earth Engine是由谷歌公司开发的一个云计算平台,用于存储、分析和处理地球观测数据。该平台集成了世界各地的多源遥感数据,包括卫星图像、气象数据等,为用户提供便捷的数据查询和分析工具。 在Google Earth Engine中进行水质反演,可以利用多源遥感数据来估算和监测水体的水质状况。通过卫星图像数据可以获取水体的光学特性,例如水体的颜色、透明度等信息。利用这些信息,可以从卫星图像中提取相关的水质指标,如叶绿素浓度、溶解有机物浓度等。 具体的水质反演方法包括基于物理模型和统计模型。基于物理模型的方法是通过分析水体的光学特性和反射光谱来估算水质指标,该方法适用于具有良好水色和透明度的水体。而基于统计模型的方法则利用已知的水质参考数据和卫星遥感数据建立关系模型,通过回归等统计方法来推算水质参数。 在Google Earth Engine中,可以利用其强大的计算和处理能力,对大量的遥感数据进行批量处理和分析。用户可以使用JavaScript或Python等编程语言,编写相应的脚本来进行水质反演。同时,该平台还提供了丰富的可视化工具,可以直观地显示水质反演结果,并将其与其他地理信息数据进行叠加分析。 通过使用Google Earth Engine进行水质反演,可以更快速、准确地获取水体的水质信息,为水资源管理和环境保护提供科学依据。此外,由于Google Earth Engine是一个开放的平台,用户可以共享自己的脚本和数据,并利用其他用户共享的脚本和数据进行合作和交流,推动水质研究的发展。 ### 回答3: Google Earth Engine 是一个云计算平台,提供了全球范围的大规模遥感数据存储、处理和分析能力。水质反演是利用遥感数据来推测水体的水质情况的过程。Google Earth Engine 在水质反演中发挥了重要作用。 首先,Google Earth Engine 提供了丰富的卫星遥感数据,包括高分辨率的遥感影像、水文模型输出以及气候数据等。这些数据可以用于观测全球的水体,提供了反演水质的基础。 其次,Google Earth Engine 提供了丰富的遥感图像处理算法和工具。用户可以使用这些算法和工具对遥感数据进行处理和分析,以获取水质相关的信息。比如,可以使用反射率模型来推测水体中的溶解性有机物含量,或者使用叶绿素指数来推测水体中的藻类生长情况。此外,Google Earth Engine 还提供了时间序列分析的功能,可以观测水体的动态变化,帮助研究者更好地理解水质反演的趋势和变化情况。 此外,Google Earth Engine 还支持用户进行数据可视化和空间分析。用户可以将反演结果以图像、图表或动画的形式展示出来,使研究者和决策者更容易理解和应用反演结果。同时,用户还可以进行空间分析,比如对不同区域的水质进行对比,或者对特定区域的水质趋势进行分析,这些分析结果可以帮助用户更好地管理和保护水资源。 总之,Google Earth Engine 提供了强大的遥感数据处理和分析能力,对于水质反演的研究和应用具有重要价值。它可以帮助研究者和决策者更好地了解和管理全球范围内的水资源,促进可持续发展和环境保护。
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值