有限元分析-材料非线性(一) 弹塑性

1. 前言

结构非线性的内容包含三部分,分别是几何非线性、材料非线性和状态非线性,几何非线性及其相关知识的补充已经完结,从本章开始进行材料非线性内容的叙述。材料非线性部分内容较多,涉及到很多材料的本构模型及相应的案例,因此分为多个章节。本章先对基本理论进行介绍,之后开始材料非线性的第一部分—弹塑性。

材料非线性在工程领域应用广泛,主要有塑性成形,结构密封,橡胶圈减震等等。ANSYS Workbench中也提供了多种非线性材料模型,包括弹塑性、粘塑性、超弹性、橡胶、蠕变等等。那什么是材料的非线性呢?以几何非线性为例,当力和变形的关系使结构刚度发生变化,即刚度K是变形的函数时,称为几何非线性。材料非线性也是如此,不过这时的非线性关系体现在应力和应变之间。

ANSYS中的材料非线性主要以下几种:

率无关塑性:“率”是指应变率,率无关可以解释为材料的响应和载荷速率或变形速率无关。所以率无关塑性可以简单理解为,材料塑性应变的发生跟时间没有关系!低温(小于¼或⅓的熔点)时大多数材料呈现率无关行为,我们本文要讲的弹塑性就是率无关塑性;

率相关塑性:同理,率相关就是材料的响应跟时间有关系,即材料的塑性应变是加载速度和时间的函数,粘塑性就属于率相关塑性;

蠕变:材料的蠕变行为也是率相关的,所产生的的应变随时间推移而发展,但是蠕变的时间尺度要比率相关塑性大得多;

非线性弹性:材料的应力应变关系是非线性的,但所有的应变都可以恢复;

超弹性:应力应变关系由应变能密度势函数定义,用于模拟橡胶和泡沫等材料,所有应变可恢复;

粘弹性:也是一种率相关材料,这种材料的应变中包含弹性应变和粘性应变;

混凝土:可以模拟断裂和压碎;

膨胀:材料在中子流作用下的体积扩大效应;

在材料非线性专题中,我们将对上面这些特性进行详细描述。

2. 基础理论

本节对弹塑性材料分析涉及到的基本理论进行介绍,首先是材料的应力-应变曲线,这部分内容在材料力学中出现过;之后是弹塑性理论涉及到的准则,包括屈服准则,用来定义材料何时从线弹性过渡到弹塑性;流动准则,用来确定塑性变形的方向;强化准则,用来给出塑性变形过程中屈服准则的强化规律。

2.1 应力-应变曲线

在材料力学中我们学过金属材料的单轴拉伸试验,单轴试验是最常见的材料试验,根据该试验我们可以得到材料的工程应力-应变曲线,如下图所示。通过该图对弹塑性分析中的一些概念进行介绍。

图2.1 材料单轴拉伸的应力-应变曲线

2.1.1 塑性与屈服极限

图中曲线OA段为材料的弹性阶段,应力-应变曲线处于线性正比关系,材料所产生的的变形均为弹性变形,卸载后可恢复原状。其中A点是弹性阶段的终点,该点的应力称为比例极限\sigma _{p}。当我们继续加载超过A点使曲线处于AB段时,材料的应力-应变关系就不再是线性了,即很小的应力增量就会产生很大的应变。如果继续加载超过B点,应力-应变曲线将进入塑性变形区域,此时卸去载荷后变形不能完全消除,材料出现永久的残余变形,这就是塑性变形。将B点的应力称为屈服极限\sigma _{s}(或\sigma _{y}),由于比例极限和屈服极限很接近,在ANSYS中假定两者相同,即OB段为弹性阶段,我们的线弹性分析均是在这一阶段进行的。

还有一些材料也存在塑性变形,但是不会出现很明显的屈服阶段。对于这类材料,工程上规定把塑性应变达到0.2%时的应力值作为屈服极限。

2.1.2 工程曲线与真实曲线

图2.1中存在两条应力-应变曲线,其中实线称为工程应力-应变曲线,或名义应力-应变曲线,虚线称为真实应力-应变曲线。在ANSYS的材料非线性分析中我们使用的是真实应力-应变曲线,下面将对这两种曲线进行介绍。

在单轴拉伸试验中,假定我们的试棒初始截面面积为A_{0},初始长度为l_{0},变形后的截面面积为A,变形后的长度为l,载荷为F,如下图所示。

图2.2 单轴拉伸试验

1. 工程应力-应变

计算公式如下所示,可以看出公式是基于小应变假设建立的,用结构的初始几何形状进行计算。但是在单轴拉伸试验中我们观察到,试棒的变形经历了4个阶段,即弹性阶段-屈服阶段-强化阶段-颈缩阶段,颈缩达到F点后发生断裂。 

\sigma _{e}=\frac{F}{A_{0}}                                                                                                               (2.1)

\epsilon _{e}=\frac{l-l_{0}}{l_{0}}                                                                                                              (2.2)

从公式中可以看出,在计算应力时并没有考虑到截面面积的变化,即使最后发生了颈缩,但工程应力的计算仍然使用了初始截面面积,这显然是不准确的。以E点的应力值为例,显然断裂时的截面面积减少了,所以真实的断裂应力应该大于工程断裂应力!在工程实践中,基于简单便于应用和安全的原理,可以继续使用工程应力-应变曲线,但是如果要模拟材料的非线性力学行为,还是要使用真实的应力-应变曲线。

2. 真实应力-应变

计算公式如下所示, 可以看出,在应力公式中使用了变形后的截面面积,应变也成了长度的非线性函数,显然更符合实际情况。

\sigma _{r}=\frac{F}{A}                                                                                                             (2.3)

\epsilon _{r}=\int_{l_{0}}^{l}\frac{1}{x}dx=ln\left ( \frac{l}{l_{0}} \right )                                                                                               (2.4)

假设在拉伸或压缩过程中材料体积不变,可以得到真实应力-应变和工程应力-应变之间的转换关系,公式如下:

A_{0}l_{0}=Al                                                                                                        (2.5)

\sigma _{r}=\sigma _{e}\times \left ( 1+\epsilon _{e} \right )                                                                                               (2.6)

\epsilon _{r}=ln\left ( 1+\epsilon _{e} \right )                                                                                                 (2.7)

在图2.1中可以看出,未到达屈服点前,真实应力应变与工程应力应变几乎完全吻合,因此若我们只进行线弹性分析,就不用对这两种曲线进行区分。但是过了屈服点之后两种曲线产生差别,真实应力要明显大于工程应力,因此当我们考虑塑性时就必须要使用真实应力-应变曲线了。

综上,在处理弹塑性材料时,我们的重点工作就是表示出屈服点后的应力-应变关系,这种关系可以通过线性拟合得到,并且根据拟合方法的不同,弹塑性材料的本构模型分成很多种类,这在下文会进行详述。

实例1:真实应力-应变的转换

已知工程应力和应变通过试验获得,且在200MPa时材料发生屈服,可以计算出线弹性阶段的弹性模量E=210GPa,真实应力可以通过式(2.6)计算获得,真实应变可以通过式(2.7)计算获得。我们得到的工程应变和真实应变都是总应变,其中包含了弹性应变和塑性应变,如式(2.8)所示。

\epsilon =\epsilon _{el}+\epsilon _{pl}                                                                                                        (2.8)

其中\epsilon _{el}为弹性应变,\epsilon _{pl}为塑性应变。超过屈服点以后弹性变形就不再增加了,屈服点后的应变均为塑性应变。在定义材料过程中,有时我们需要知道材料的塑性应变,可通过下式获得:

\epsilon _{pl}=\epsilon _{r}-\frac{\sigma _{r}}{E}                                                                                                       (2.9)

式中真实应变\epsilon _{r}减去的项就是弹性应变\epsilon _{el},可通过真实应力和弹性模量计算得到。根据这些关系式我们可以轻松地完成下表。

<
表2.1 应力-应变转换
工程应力(MPa) 工程应变 真实应力(MPa) 真实应变 塑性应变
200 0.00095 200.19 0.00095 0.0
240 0.025
评论 9
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值