1. 前言
本章开始介绍材料非线性中的超弹性,首先介绍超弹性材料的定义和特征,以及一些基本概念,之后介绍ANSYS Workbench中的超弹性材料本构模型,包括理论的建模过程与工程分析时的设置,最后介绍超弹性材料计算过程中可能会遇到的问题,以及相应的解决办法,其中对前面文章中体积自锁内容进行了补充,在文章的结尾提供了一些超弹性材料的分析案例。
2. 基本理论
本节对超弹性材料涉及到的基本理论进行介绍,首先需要知道什么是超弹性材料,它与线弹性材料有何不同,之后对一些概念性的问题进行介绍,最后描述超弹性材料本构模型的基本原理。
2.1 超弹性材料定义
超弹性材料是一种理想弹性材料的本构模型,与线弹性材料的区别在于,超弹性材料的弹性变形是高度非线性的!工程中常见的或者说可以用超弹性材料本构模型描述的有橡胶、软组织、泡沫和海绵等等,这些材料通常具有如下特点:
- 相对于金属材料而言,超弹性材料普遍非常柔软;
- 应力-应变曲线呈现出高度的非线性;
- 应力-应变曲线在加载和卸载时遵循相同的路径;
- 可承受很大的弹性变形,大约在100%~700%左右;
橡胶和软组织呈现出几乎或完全不可压缩性,泡沫和海绵呈现出可压缩性,它们都可以建立为超弹性材料。在仿真中处理这些超弹性材料时,需要假设材料的响应是各向同性和各项等温的。

2.2 不可压缩性
有很多超弹性材料,特别是橡胶或橡胶类材料,都是不可压缩的。这些材料的不可压缩特性具体都体现在了泊松比接近0.5,一般在0.48到0.5之间,同时0.5是泊松比的取值上限,下限为-1。下面针对不可压缩的特性,在理论上进行分析。
首先要明确泊松比是什么,这个问题相信大家都不陌生,那么不可压缩特性是怎么和泊松比联系在一起的呢,或者为什么泊松比为0.5时材料不可压缩?针对这个问题,有很多文章直接从体积模量入手进行解释,体积模量的计算公式如下:
(2.1)
当泊松比为0.5时,体积模量趋于无穷,所以材料变得不可压缩。这一类解释是从结果推原因,至于为什么泊松比等于0.5时材料不可压缩,下面将进行理论推导。

取一个三维微元体,变形前的体积V=dxdydz,变形后三个边的长度分比为:
(2.2)
变形后的体积等于变形后三条边长的乘积,忽略高阶量可以表示为如下公式:
(2.3)
所以体应变为:
(2.4)
根据广义胡克定律,三个方向的应变可以通过如下公式得到:
(2.5)
将式(2.5)代入式(2.4),可以计算出体应变为:
(2.6)
从式中可以看出,当泊松比为0.5时,不论三个方向的应力多大,体应变始终为0,即外力的作用不会使结构的体积发生变化,因此我们称这样的材料为不可压缩材料。
将上式(2.6)进一步简化,可以得到(2.1)的体积模量公式:
(2.7)
其中p为三个主应力的平均值,也称为静水压力,K为体积模量。
2.3 超弹性材料试验数据
材料的本构模型就是通过试验数据拟合出的应力-应变曲线,在弹塑性材料章节中,我们可以通过输入“单轴塑性应变数据”拟合出本构模型,或者确定两条直线的斜率(双线性强化)来模拟应力-应变曲线,在设置材料时只需要输入屈服强度和切线模量。这是因为在金属材料的试验中,默认单轴拉伸试验和单轴压缩试验的结果相同,与此同时,剪切试验的结果可以通过单轴