目录
前言
🌏一、浮点数存储规则
🍯1.表示形式
🍤 (-1)^S* M* 2^E
🍤 (-1)^s表示符号位,当s=0,目标为正数;当s会1,目标为负数。🍤 M表示有效数字,大于等于1,小于2。
🍤 2^E表示指数位。
举例来说:
🍤十进制的5.0,写成二进制是101.0,相当于1.01×272。那么,按照上面V的格式,可以得出s=O,M=1.01,E=2。
🍤十进制的-5.0,写成二进制是-101.0,相当于-1.01x212。那么,s=1,M=1.01,E=2。
🍯2.存储模式
🍤对于32位的浮点数,最高的1位是符号位s,接着的8位是指数E,剩下的23位为有效数字M.
🍤对于64位的浮点数,最高的1位是符号位S接着的11位是指数E,剩下的52位为有效数字M
🍯3.特殊规则
❤️对于M:
🍤IEEE 754规定,在计算机内部保存M时,默认这个数的第一位总是1,因此可以被舍去,只保存后面的xxxxxx部分。
🍤比如保存1.01的时候,只保存01,等到读取的时候,再把第一位的1加上去。这样做的目的,是节省1位有效数字。
🍤以32位浮点数为例,留给M只有23位,将第一位的1舍去以后,等于可以保存24位有效数字。
❤️对于E存入:
🍤首先,E为一个无符号整数(unsigned int)
这意味着,如果E为8位,它的取值范围为0~255;如果E为11位,它的取值范围为0~2047。🍤IEEE754规定,存入内存时E的真实值必须再加上一个中间数,对于8位的E,这个中间数是127;对于11位的E,这个中间数是1023。比如,2^10的E是10,所以保存成32位浮点数时,必须保存成10+127=137,即10001001。
❤️对于E取出来:
E不全为0或不全为1:
🍤这时,浮点数就采用下面的规则表示,即指数E的计算值减去127(或1023),得到真实值,再将有效数字M前加上第一位的1。
比如:
0.5 的二进制形式为0.1,由于规定正数部分必须为1,即将小数点右移1位,则为1.0*2个(-1),其阶码为-1+127=126,表示为
01111110,而尾数1.0去掉整数部分为0,补齐0到23位00000000000000000000000,则其二进制表示形式为:0 01111110 00000000000000000000000
E全为0:
🍤这时,浮点数的指数E等于1-127(或者1-1023)即为真实值,有效数字M不再加上第一位的1,而是还原为0.xxxxxx的小数。这样做是为了表示+0,以及接近于0的很小的数字。
E全为1:
🍤这时,如果有效数字M全为0,表示±无穷大(正负取决于符号位s);
🌏二、举一个例子
int main()
{
int n = 9;
float *pFloat = (float *)&n;
printf("n的值为:%d\n",n);
printf("*pFloat的值为:%f\n",*pFloat);
*pFloat = 9.0;
printf("num的值为:%d\n",n);
printf("*pFloat的值为:%f\n",*pFloat);
return 0;
}
🍯1.0.000000
S = 0
E = 00000000
M = 000 0000 0000 0000 0000 1001
9 ->0000 0000 0000 0000 0000 0000 0000 1001
由于指数E全为0,所以写成(-1)^0 × 0.00000000000000000001001×2^(-126)
所以输出是0
🍯2.1091567616
9.0 ->1001.0 ->(-1)^0 *1.001*2^3 -> s=0, M=1.001,E=3+127=130
🍤那么,第一位的符号位s=0,有效数字M等于001后面再加20个0,凑满23位,指数E等于3+127=130,即10000010。
//S+E+M
0 10000010 001 0000 0000 0000 0000 0000
🌏总结