《C语言初阶进阶完整教程》- 已完结 - 浮点型数据在内存中的存储

⭐️本篇博客我要给大家分享一下浮点型数据在内存中的存储。希望对大家有所帮助。
⭐️ 博主码云gitee链接:码云主页

目录

前言

🌏一、浮点数存储规则

        🍯1.表示形式

        🍯2.存储模式

        🍯3.特殊规则

🌏二、举一个例子

        🍯1.0.000000

        🍯2.1091567616

🌏总结


前言


🌏一、浮点数存储规则

        🍯1.表示形式

🍤 (-1)^S* M* 2^E
🍤 (-1)^s表示符号位,当s=0,目标为正数;当s会1,目标为负数。

🍤 M表示有效数字,大于等于1,小于2。
🍤 2^E表示指数位。

        举例来说:
🍤十进制的5.0,写成二进制是101.0,相当于1.01×272。那么,按照上面V的格式,可以得出s=O,M=1.01,E=2。
🍤十进制的-5.0,写成二进制是-101.0,相当于-1.01x212。那么,s=1,M=1.01,E=2。
 

        🍯2.存储模式

🍤对于32位的浮点数,最高的1位是符号位s,接着的8位是指数E,剩下的23位为有效数字M.

🍤对于64位的浮点数,最高的1位是符号位S接着的11位是指数E,剩下的52位为有效数字M

        🍯3.特殊规则

❤️对于M:

🍤IEEE 754规定,在计算机内部保存M时,默认这个数的第一位总是1,因此可以被舍去,只保存后面的xxxxxx部分。

🍤比如保存1.01的时候,只保存01,等到读取的时候,再把第一位的1加上去。这样做的目的,是节省1位有效数字。

🍤以32位浮点数为例,留给M只有23位,将第一位的1舍去以后,等于可以保存24位有效数字。

❤️对于E存入:

🍤首先,E为一个无符号整数(unsigned int)
这意味着,如果E为8位,它的取值范围为0~255;如果E为11位,它的取值范围为0~2047。
🍤IEEE754规定,存入内存时E的真实值必须再加上一个中间数,对于8位的E,这个中间数是127;对于11位的E,这个中间数是1023。比如,2^10的E是10,所以保存成32位浮点数时,必须保存成10+127=137,即10001001。 

❤️对于E取出来: 

        E不全为0或不全为1:

🍤这时,浮点数就采用下面的规则表示,即指数E的计算值减去127(或1023),得到真实值,再将有效数字M前加上第一位的1。
比如:
0.5 的二进制形式为0.1,由于规定正数部分必须为1,即将小数点右移1位,则为1.0*2个(-1),其阶码为-1+127=126,表示为
01111110,而尾数1.0去掉整数部分为0,补齐0到23位00000000000000000000000,则其二进制表示形式为:

0 01111110 00000000000000000000000

        E全为0:

🍤这时,浮点数的指数E等于1-127(或者1-1023)即为真实值,有效数字M不再加上第一位的1,而是还原为0.xxxxxx的小数。这样做是为了表示+0,以及接近于0的很小的数字。

        E全为1: 

🍤这时,如果有效数字M全为0,表示±无穷大(正负取决于符号位s);

🌏二、举一个例子

int main()
{
    int n = 9;
    float *pFloat = (float *)&n;
    printf("n的值为:%d\n",n);
    printf("*pFloat的值为:%f\n",*pFloat);
    *pFloat = 9.0;
    printf("num的值为:%d\n",n);
    printf("*pFloat的值为:%f\n",*pFloat);
    return 0;
}

        🍯1.0.000000

S = 0

E = 00000000

M = 000 0000 0000 0000 0000 1001

9 ->0000 0000 0000 0000 0000 0000 0000 1001

 由于指数E全为0,所以写成(-1)^0 × 0.00000000000000000001001×2^(-126)

 所以输出是0

        🍯2.1091567616

9.0 ->1001.0 ->(-1)^0 *1.001*2^3 ->      s=0, M=1.001,E=3+127=130

🍤那么,第一位的符号位s=0,有效数字M等于001后面再加20个0,凑满23位,指数E等于3+127=130,即10000010。  

//S+E+M
0 10000010 001 0000 0000 0000 0000 0000

🌏总结

        

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

penguin_bark

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值