查看原题: https://www.luogu.com.cn/problem/P1440
题目描述 一个含有 nn 项的数列,求出每一项前的 mm 个数到它这个区间内的最小值。若前面的数不足 mm 项则从第 11
个数开始,若前面没有数则输出 00。输入格式 第一行两个整数,分别表示 n,m。
第二行,nn个正整数,为所给定的数列 ai。
输出格式 n 行,每行一个整数,第 i 个数为序列中 ai 之前 m 个数的最小值。
输入输出样例
输入 #1
6 2
7 8 1 4 3 2
输出 #1
0
7
7
1
1
3
题解:
// 没有优化之前的, 模板:
时间超限,空间超限:
#include<bits/stdc++.h>
using namespace std;
const int N = 2*10e6 + 100;
int f[N][20];
int n, m;
// 得到ST表
void ST(){
for(int i = 1; i <= n; i ++){
cin >> f[i][0];
}
for(int j = 1; (1<<j) <= n; j ++){
for(int i = 1; i+1<<j-1 <= n; i ++){
f[i][j] = min(f[i][j-1], f[i+(1<<(j-1))][j-1]);
}
}
}
//O(1)查询
int RMQ(int l, int r){
int k = log2(r-l+1);
return min(f[l][k], f[r-(1<<k)+1][k]);
}
int main(){
cin >> n >> m;
ST();
for(int i = 1; i <= n; i ++){
if(i-1 >= m){
cout << RMQ(i-m, i-1) << endl;
}else if(i-1>0){
cout << RMQ(1, i-1) << endl;
}else{
cout << 0 << endl;
}
}
return 0;
}
优化后的
// 优化之后: 还要注意关流不可以过
不知道为什么关流后还是过不了
#include<bits/stdc++.h>
#include<stdio.h>
using namespace std;
const int N = 2*10e6 + 100;
const int inf = 3*1e7 + 1;
int f[N][2]; // 这里用j%2来节省空间, 防止空间超限
int n, m, pow2;
void RMQ() {
for(int j = 1; (1<<j) <= m; j ++) {
for(int i = 1; i+(1<<j)-1 <= n; i ++) {
//优化后要是注意这里改变
f[i][j%2] = min(f[i][!(j%2)], f[i+(1<<(j-1))][!(j%2)]);
}
pow2 = j;
}
}
int main() {
// 只能用scanf()和printf(), 不能用cin, cout, 关流也不行
ios::sync_with_stdio(0);
cin.tie(0);
cout.tie(0);
// cin >> n >> m;
// cout << 0 << endl;
scanf("%d%d", &n, &m);
printf("0\n");
int mmin = inf;
for(int i = 1; i <= n; i ++) {
// cin >> f[i][0];
scanf("%d", &f[i][0]);
if(i <= m) {
if(i > 1) {
// cout << mmin << endl;
printf("%d\n", mmin);
}
mmin = min(f[i][0], mmin);
}
}
RMQ();
for(int i = m + 1; i <= n; i ++) {
int l = i - m, r = i - 1;
// cout << min(f[l][pow2%2], f[r-(1<<pow2)+1][pow2%2]) << endl;
printf("%d\n", min(f[l][pow2%2], f[r-(1<<pow2)+1][pow2%2]));
}
return 0;
}