一、有限域(伽罗华域)
1.1 表示方法:GF(),p为素数(只能被1和本身整除的数叫素数,如3,7,11),m为正整数。
1.2 定义:域内元素个数有限叫有限域。
二、有限域内运算
我们将讨论有限域GF() 中的四种基本运算:加法、减法、乘法和除法。
以GF() 中的一个不可约多项式f(x)=
为基础来构造运算。在这个有限域中,其中 α是 f(x) 的一个根。
2.1 GF()上的加法和减法都是模运算;举个栗子:
结果不是2,而是0,最后要取模2。
2.2 GF()上的乘法也要进行模运算;
2.3 GF()上的除法(基本不用所以没看,放个图可以大致学习下)
2.4 域内元素:是该域的一个本原元,元素共个
,分别为0,
。
表达式为,
,
前面的m个元素~
可以直接算,
及之后的元素都可以通过0和
~
表示出来。
以GF()为例,
元素如下:
=1;
=
;
=
;
=
;(从这里不懂可以先挖个坑,在4.本原多项式会填上)
;
;
;
元素为0,1,,
,
,
,
,
共8个。
(再往后算就会循环前面的元素了,不信可以自己写写)
三、不可约多项式
3.1 定义:在指定的域上不能分解的多项式
在这里可以理解为在有限域上的素多项式(只能被1和多项式本身整除)。
3.2 求取方法:在GF()上,素多项式的系数为GF(p)上的元素,即为0,1,2...p-1;指数最高次为m。之后检验它的不可约性,通过代入GF(p)上的元素,多项式结果不为0的,即为不可约多项式。
3.3 示例:比如找GF()的不可约多项式,先找到全部指数最高次为2,系数为0或1的,那么有:
、
、
、
;再看哪些不是素多项式,很明显
和
都可以被x除;而
可以被x+1整除,也不是素多项式;只剩下
,它不可以被其他多项式整除,或者你可以代入0和1去检验,结果都不为0,因此这个多项式是GF(
)域上的不可约多项式。
四、本原多项式
4.1 定义:本原多项式p(x)是指定义在某个有限域中的多项式,其中的本原是该多项式的根,即
。一个本原是有限域中的一个元素,能够生成该域的所有非零元素,通过不断乘以自身来达到这一目的。
PS:本原多项式一定是不可约多项式(不可约多项式不一定是本原多项式)。
4.2 填坑:
比如对于GF(),它的不可约多项式为
、
,同时它们也是本原多项式。我们第二部分的例子,就是选用了
作为本原多项式p(x)去得到整个域内的元素。
在我们求的时候,因为
是域上的本原,所以代入本原多项式p(x)=
的结果为0,因此有
,那么
=
(域内的运算都是按绝对值算的,没有负数)。
可以尝试去算,会发现等于1,后面的元素也会去重复这个域内已有的元素,算来算去都是这些元素,个数有限,已经通过本原多项式把整个域上的元素全都生成了。
写在最后
最近在学RS编码,分享一下最近学到的内容,写的时候顺便查漏补缺,有问题欢迎大家指出~