有限域、域内运算、不可约多项式、本原多项式【这篇一定能让你看懂!!】

一、有限域(伽罗华域)

1.1 表示方法:GF(p^m),p为素数(只能被1和本身整除的数叫素数,如3,7,11),m为正整数。

1.2 定义:域内元素个数有限叫有限域。

二、有限域内运算

我们将讨论有限域GF(2^{3}) 中的四种基本运算:加法、减法、乘法和除法。

以GF(2^3) 中的一个不可约多项式f(x)= x^{3}+x+1 为基础来构造运算。在这个有限域中,其中 α是 f(x) 的一个根。

2.1 GF(p^m)上的加法和减法都是运算;举个栗子:

结果不是2,而是0,最后要取模2。

2.2 GF(p^m)上的乘法也要进行模运算;

 

2.3 GF(p^m)上的除法(基本不用所以没看,放个图可以大致学习下)

2.4 域内元素:\alpha是该域的一个本原元,元素共个p^m,分别为0,\alpha ^i

\alpha ^{i}表达式为,\alpha ^i=u_{0}+u_{1}\alpha +u_{2}\alpha^2+...+u_{m-1}\alpha^\textup{m-1}

前面的m个元素\alpha^0~\alpha ^\textup{ (m-1)}可以直接算,\alpha^\textup{m}及之后的元素都可以通过0和\alpha^0~\alpha ^\textup{ (m-1)}表示出来。

以GF(2^3)为例,\alpha ^i元素如下:

\alpha ^{0}=1;

\alpha ^{1}=\alpha

\alpha ^{2}=\alpha^2;

\alpha^3=\alpha +1;(从这里不懂可以先挖个坑,在4.本原多项式会填上)

\alpha ^{4}= \alpha ^3\cdot \alpha = (\alpha +1)\cdot \alpha =\alpha ^2+\alpha;

\alpha ^{5}= \alpha ^4\cdot \alpha = (\alpha^2 +\alpha )\cdot \alpha =\alpha ^3+\alpha^2=\alpha ^2+\alpha +1;

\alpha ^{6}= \alpha ^5\cdot \alpha = (\alpha^2 +\alpha +1)\cdot \alpha =\alpha ^3+\alpha^2+\alpha =\alpha ^2+2\alpha+1 =\alpha ^2+1;

元素为0,1,\alpha\alpha^2\alpha +1\alpha ^{2}+\alpha\alpha ^2+\alpha +1\alpha ^2+1共8个。

(再往后算就会循环前面的元素了,不信可以自己写写)

三、不可约多项式

3.1 定义:在指定的域上不能分解的多项式

在这里可以理解为在有限域上的素多项式(只能被1和多项式本身整除)。

3.2 求取方法:在GF(p^m)上,素多项式的系数为GF(p)上的元素,即为0,1,2...p-1;指数最高次为m。之后检验它的不可约性,通过代入GF(p)上的元素,多项式结果不为0的,即为不可约多项式。

3.3 示例:比如找GF(2^{2})的不可约多项式,先找到全部指数最高次为2,系数为0或1的,那么有:x^{2}+x+1x^{2}+xx^{2}+1x^{2};再看哪些不是素多项式,很明显x^{2}x^{2}+x都可以被x除;而x^{2}+1\equiv x^{2}+2x+1可以被x+1整除,也不是素多项式;只剩下x^{2}+x+1,它不可以被其他多项式整除,或者你可以代入0和1去检验,结果都不为0,因此这个多项式是GF(2^{2})域上的不可约多项式。

四、本原多项式

4.1 定义:本原多项式p(x)是指定义在某个有限域中的多项式,其中的本原\alpha是该多项式的根,即p(\alpha )=0。一个本原是有限域中的一个元素,能够生成该域的所有非零元素,通过不断乘以自身来达到这一目的。

PS:本原多项式一定是不可约多项式(不可约多项式不一定是本原多项式)。

4.2 填坑:

比如对于GF(2^3),它的不可约多项式为x^{3}+x^{2}+1x^{3}+x+1,同时它们也是本原多项式。我们第二部分的例子,就是选用了x^{3}+x+1作为本原多项式p(x)去得到整个域内的元素。

在我们求\alpha ^3的时候,因为\alpha是域上的本原,所以代入本原多项式p(x)=x^{3}+x+1的结果为0,因此有\alpha ^{3}+\alpha +1=0,那么\alpha^3=\alpha +1(域内的运算都是按绝对值算的,没有负数)。

可以尝试去算\alpha ^{7},会发现等于1,后面的元素也会去重复这个域内已有的元素,算来算去都是这些元素,个数有限,已经通过本原多项式把整个域上的元素全都生成了。

写在最后

最近在学RS编码,分享一下最近学到的内容,写的时候顺便查漏补缺,有问题欢迎大家指出~

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值