win11安装显卡驱动、cuda、cudnn、anaconda

本文介绍了显卡驱动在计算机中的作用,NVIDIA的CUDA平台及其在深度学习中的应用,以及如何通过cuDNN加速计算。此外,还详细讲解了如何安装和管理CUDA、cuDNN以及Anaconda,以支持数据科学和机器学习项目。
摘要由CSDN通过智能技术生成

介绍

  1. 显卡驱动(Graphics Card Driver)

    • 显卡驱动是连接计算机操作系统与显卡硬件之间的软件,它允许操作系统与显卡通信,控制显卡的功能和性能。驱动程序可以影响显卡的性能、稳定性和兼容性。
    • NVIDIA提供了两种类型的显卡驱动:Game Ready和Studio。Studio驱动针对专业计算任务进行了优化,如深度学习、图像处理等。
  2. CUDA(Compute Unified Device Architecture)

    • CUDA是NVIDIA提供的并行计算平台和编程模型,允许开发者在NVIDIA显卡上进行高性能计算和并行处理。CUDA允许将一些计算任务放到显卡上执行,从而加速计算。
    • 要使用CUDA,您需要安装显卡驱动和适用于您的显卡的CUDA工具包。
  3. cuDNN(CUDA Deep Neural Network library):(类似于cuda的补丁)

    • cuDNN是NVIDIA的深度学习库,提供了一组高性能的深度学习原语,用于加速深度神经网络的训练和推理。它针对NVIDIA显卡进行了优化,提供了优化的卷积、池化等操作。
    • cuDNN通常与CUDA一起使用,以提高深度学习任务的性能。
  4. Anaconda

    • Anaconda是一个开源的Python和R编程语言的发行版本,提供了许多用于数据科学、机器学习和科学计算的包和工具。Anaconda提供了一个方便的环境管理工具,可以轻松地创建和管理不同的Python环境,并管理包的依赖关系。
    • Anaconda还可以用于安装和管理深度学习框架、GPU相关工具等。

关系和安装步骤:

  1. 安装显卡驱动:首先,您需要安装适用于您的显卡的NVIDIA显卡驱动。这将允许您的操作系统与显卡通信。

  2. 安装CUDA:一旦您安装了显卡驱动,您可以下载并安装适用于您的显卡的CUDA工具包。CUDA允许您在显卡上运行高性能的并行计算任务。

  3. 安装cuDNN:如果您计划使用深度学习框架(如TensorFlow、PyTorch等),则可以安装cuDNN。cuDNN可以通过NVIDIA的开发者网站获取,并与CUDA一起使用。

  4. 安装Anaconda:如果您想在Anaconda环境中管理Python和库,您可以下载并安装Anaconda发行版。这将允许您轻松创建虚拟环境并安装所需的Python包、深度学习框架以及其他工具。

        总结起来,显卡驱动提供了显卡硬件的操作和控制能力,CUDA提供了在显卡上进行高性能计算的平台,cuDNN加速了深度学习任务,而Anaconda为环境和包管理提供了便捷的方式。在进行深度学习或机器学习工作时,安装和配置这些工具是很重要的,以获得更好的性能和开发体验。

1.下载安装显卡驱动

53ee46ef158d41d9953df52415e0ec88.png

 根据不同显卡配置下载,注意台式机和笔记本区分,类型最好选studio版本

安装

自定义安装后全选,其他默认。在安装新驱动之前遇到了问题,或者要进行重大版本升级,选择清洁安装可能更有益,但如果系统正常运行且希望尽量减少安装时间,您也可以选择不进行清洁安装。安装了貌似就不用管了

2.下载安装cuda

英伟达开发者网站下载CUDA,选择合适的版本。f79936e64d0d487baa9474fdadcfdd1c.png

 

40132c7748534131ae9cd89cb792ce15.png

 先在命令行输入nvidia-smi并回车可以看到cuda版本,图中下载的版本不应高于12.2

239161d82615414cad75c573bd908f5d.png

 然后再pytorch官网查看其支持的最高cuda版本,图中为11.8,因此我们下载11.8

4dea87cb8d9d4510849db1995d4428cb.png

建议用科学上网,不然很慢。

安装

同样自定义安装后全选,其他默认。结束后检查环境变量

e1c14731f2784907be94947e62c20918.png

 

验证是否安装成功:

运行cmd,输入nvcc --version 即可查看版本号;

set cuda,可以查看 CUDA 设置的环境变量。370e0683c50b4032b4b7430bcafe3cbb.png

 3.cudnn下载安装

先注册账号才能下载Log in | NVIDIA Developer

选择和cuda对应版本下载84e15ae88133435b919d2d36b5116e79.png

 

下载解压后82506e700e81482e9ab23d30d8998a6a.png

 把三个文件夹里的内容分别复制在cuda对应文件夹里075bb9b2fca94043b359dad0d3cac742.png

添加环境变量

8c6d3a0b2e284a5d9b3e91d312988326.png

 

 验证安装

在cuda安装目录\extras\demo_suite中,运行bandwidthTest.exe和deviceQuery.exe,方式如下图

e7867c6641004632986401c0298c323f.png

 

4.下载安装anaconda3

装anaconda先必须卸载python

直接去其官网下载windows版本Free Download | Anaconda

选择just me或者all都可以 ,路径默认C盘,然后四个勾全选,最后finish两个勾不选

添加环境变量

ee94607974ff4c54b3bd5a5d1926b868.png

 

验证安装

命令行输入conda --version 或者conda出现版本或者介绍即成功

 

 

 

 

 

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值