介绍
-
显卡驱动(Graphics Card Driver):
- 显卡驱动是连接计算机操作系统与显卡硬件之间的软件,它允许操作系统与显卡通信,控制显卡的功能和性能。驱动程序可以影响显卡的性能、稳定性和兼容性。
- NVIDIA提供了两种类型的显卡驱动:Game Ready和Studio。Studio驱动针对专业计算任务进行了优化,如深度学习、图像处理等。
-
CUDA(Compute Unified Device Architecture):
- CUDA是NVIDIA提供的并行计算平台和编程模型,允许开发者在NVIDIA显卡上进行高性能计算和并行处理。CUDA允许将一些计算任务放到显卡上执行,从而加速计算。
- 要使用CUDA,您需要安装显卡驱动和适用于您的显卡的CUDA工具包。
-
cuDNN(CUDA Deep Neural Network library):(类似于cuda的补丁)
- cuDNN是NVIDIA的深度学习库,提供了一组高性能的深度学习原语,用于加速深度神经网络的训练和推理。它针对NVIDIA显卡进行了优化,提供了优化的卷积、池化等操作。
- cuDNN通常与CUDA一起使用,以提高深度学习任务的性能。
-
Anaconda:
- Anaconda是一个开源的Python和R编程语言的发行版本,提供了许多用于数据科学、机器学习和科学计算的包和工具。Anaconda提供了一个方便的环境管理工具,可以轻松地创建和管理不同的Python环境,并管理包的依赖关系。
- Anaconda还可以用于安装和管理深度学习框架、GPU相关工具等。
关系和安装步骤:
-
安装显卡驱动:首先,您需要安装适用于您的显卡的NVIDIA显卡驱动。这将允许您的操作系统与显卡通信。
-
安装CUDA:一旦您安装了显卡驱动,您可以下载并安装适用于您的显卡的CUDA工具包。CUDA允许您在显卡上运行高性能的并行计算任务。
-
安装cuDNN:如果您计划使用深度学习框架(如TensorFlow、PyTorch等),则可以安装cuDNN。cuDNN可以通过NVIDIA的开发者网站获取,并与CUDA一起使用。
-
安装Anaconda:如果您想在Anaconda环境中管理Python和库,您可以下载并安装Anaconda发行版。这将允许您轻松创建虚拟环境并安装所需的Python包、深度学习框架以及其他工具。
总结起来,显卡驱动提供了显卡硬件的操作和控制能力,CUDA提供了在显卡上进行高性能计算的平台,cuDNN加速了深度学习任务,而Anaconda为环境和包管理提供了便捷的方式。在进行深度学习或机器学习工作时,安装和配置这些工具是很重要的,以获得更好的性能和开发体验。
1.下载安装显卡驱动
根据不同显卡配置下载,注意台式机和笔记本区分,类型最好选studio版本
安装
自定义安装后全选,其他默认。在安装新驱动之前遇到了问题,或者要进行重大版本升级,选择清洁安装可能更有益,但如果系统正常运行且希望尽量减少安装时间,您也可以选择不进行清洁安装。安装了貌似就不用管了
2.下载安装cuda
去英伟达开发者网站下载CUDA,选择合适的版本。
先在命令行输入nvidia-smi并回车可以看到cuda版本,图中下载的版本不应高于12.2
然后再pytorch官网查看其支持的最高cuda版本,图中为11.8,因此我们下载11.8
建议用科学上网,不然很慢。
安装
同样自定义安装后全选,其他默认。结束后检查环境变量
验证是否安装成功:
运行cmd,输入nvcc --version 即可查看版本号;
set cuda,可以查看 CUDA 设置的环境变量。
3.cudnn下载安装
先注册账号才能下载Log in | NVIDIA Developer
选择和cuda对应版本下载
下载解压后
把三个文件夹里的内容分别复制在cuda对应文件夹里
添加环境变量
验证安装
在cuda安装目录\extras\demo_suite中,运行bandwidthTest.exe和deviceQuery.exe,方式如下图
4.下载安装anaconda3
装anaconda先必须卸载python
直接去其官网下载windows版本Free Download | Anaconda
选择just me或者all都可以 ,路径默认C盘,然后四个勾全选,最后finish两个勾不选
添加环境变量
验证安装
命令行输入conda --version 或者conda出现版本或者介绍即成功