LBP特征描述算⼦---两段python程序检测人脸

程序1:

import numpy as np
import cv2

face_detect = cv2.CascadeClassifier("lbpcascade_frontalface_improved.xml")

img = cv2.imread("photo.bmp")
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)

faces = face_detect.detectMultiScale(gray, 1.1, 5, cv2.CASCADE_SCALE_IMAGE, (50, 50), (100, 100))

if len(faces) > 0:
    for faceRect in faces:
        x, y, w, h = faceRect
        cv2.rectangle(img, (x, y), (x + w, y + h), (255, 0, 0), 2, 8, 0)
        roi_gray = gray[y:y + h, x:x + w]
        roi_color = img[y:y + h, x:x + w]
cv2.imshow("img", img)
cv2.waitKey(0)

运行结果:
在这里插入图片描述
程序2:

#coding:utf-8
import cv2 as cv
# 读取原始图像
img= cv.imread('photo.bmp')
#face_detect = cv2.CascadeClassifier('haarcascade_frontalface_default.xml')
face_detect = cv.CascadeClassifier("lbpcascade_frontalface_improved.xml")
# 检测⼈人脸
# 灰度处理
gray = cv.cvtColor(img, code=cv.COLOR_BGR2GRAY)
# 检查⼈人脸 按照1.1倍放到 周围最⼩小像素为5

#face_zone = face_detect.detectMultiScale(gray, scaleFactor = 2, minNeighbors = 2) # maxSize =(55,55)
face_zone = face_detect.detectMultiScale(gray, 1.1, 5, cv2.CASCADE_SCALE_IMAGE, (50, 50), (100, 100)) # maxSize =(55,55)
print ('识别⼈人脸的信息:\n',face_zone)
# 绘制矩形和圆形检测⼈人脸
for x, y, w, h in face_zone:
# 绘制矩形人脸区域
    cv.rectangle(img, pt1 = (x, y), pt2 = (x+w, y+h), color = [0,0,255], thickness=2)
# 绘制圆形⼈人脸区域 radius表示半径
    cv.circle(img, center = (x + w//2, y + h//2), radius = w//2, color = [0,255,0], thickness = 2)
# 设置图⽚片可以⼿手动调节⼤大⼩小
cv.namedWindow("Easmount", 0)
# 显示图⽚片
cv.imshow("Easmount", img)
# 等待显示 设置任意键退出程序
cv.waitKey(0)
cv.destroyAllWindows()

运行结果:
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值