1、查看conda 版本
cmd进入窗口
nvidia-smi
conda --version将输出当前安装的Anaconda或Miniconda版本号。
nvcc -V
测试安装情况
日常使用中
系统升级可能导致nvcc -V失效
查看安装
缺少NVIDIA CUDA 相关完整版如下
重新安装cuda,参考链接相关链接
(1)英伟达官网英伟达官网
版本选择,11.80
(2)解压安装
结束后
添加环境变量
4、cudnn
C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.8\extras\demo_suite> bandwidthTest.exe
[CUDA Bandwidth Test] - Starting...
Running on...
Device 0: NVIDIA GeForce RTX 3060
Quick Mode
Host to Device Bandwidth, 1 Device(s)
PINNED Memory Transfers
Transfer Size (Bytes) Bandwidth(MB/s)
33554432 23579.9
Device to Host Bandwidth, 1 Device(s)
PINNED Memory Transfers
Transfer Size (Bytes) Bandwidth(MB/s)
33554432 24883.5
Device to Device Bandwidth, 1 Device(s)
PINNED Memory Transfers
Transfer Size (Bytes) Bandwidth(MB/s)
33554432 306609.8
Result = PASS
NOTE: The CUDA Samples are not meant for performance measurements. Results may vary when GPU Boost is enabled.
deviceQuery.exe
deviceQuery.exe Starting... Computing Toolkit\CUDA\v11.8\extras\demo_suite> bandwidthTest.exe
CUDA Device Query (Runtime API) version (CUDART static linking)
Detected 1 CUDA Capable device(s)
Device 0: "NVIDIA GeForce RTX 3060"
CUDA Driver Version / Runtime Version 11.8 / 11.8
CUDA Capability Major/Minor version number: 8.6
Total amount of global memory: 12288 MBytes (12884377600 bytes)
(28) Multiprocessors, (128) CUDA Cores/MP: 3584 CUDA Cores
GPU Max Clock rate: 1852 MHz (1.85 GHz)
Memory Clock rate: 7501 Mhz
Memory Bus Width: 192-bit
L2 Cache Size: 2359296 bytes
Maximum Texture Dimension Size (x,y,z) 1D=(131072), 2D=(131072, 65536), 3D=(16384, 16384, 16384)
Maximum Layered 1D Texture Size, (num) layers 1D=(32768), 2048 layers
Maximum Layered 2D Texture Size, (num) layers 2D=(32768, 32768), 2048 layers
Total amount of constant memory: zu bytes
Total amount of shared memory per block: zu bytes
Total number of registers available per block: 65536
Warp size: 32
Maximum number of threads per multiprocessor: 1536
Maximum number of threads per block: 1024
Max dimension size of a thread block (x,y,z): (1024, 1024, 64)
Max dimension size of a grid size (x,y,z): (2147483647, 65535, 65535)
Maximum memory pitch: zu bytes
Texture alignment: zu bytes
Concurrent copy and kernel execution: Yes with 1 copy engine(s)
Run time limit on kernels: Yes
Integrated GPU sharing Host Memory: No
Support host page-locked memory mapping: Yes
Alignment requirement for Surfaces: Yes
Device has ECC support: Disabled
CUDA Device Driver Mode (TCC or WDDM): WDDM (Windows Display Driver Model)
Device supports Unified Addressing (UVA): Yes
Device supports Compute Preemption: Yes
Supports Cooperative Kernel Launch: Yes
Supports MultiDevice Co-op Kernel Launch: No
Device PCI Domain ID / Bus ID / location ID: 0 / 1 / 0
Compute Mode:
< Default (multiple host threads can use ::cudaSetDevice() with device simultaneously) >
deviceQuery, CUDA Driver = CUDART, CUDA Driver Version = 11.8, CUDA Runtime Version = 11.8, NumDevs = 1, Device0 = NVIDIA GeForce RTX 3060
Result = PASS
C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.8\extras\demo_suite>
检查确认
2、创建环境,并激活确认要下载的python版本
查看当前有多少环境
打开Anaconda Prompt
conda env list
或者
conda info --envs
打开Anaconda Prompt
输入命令conda create -n torch2 python=3.9
其中torch2 是虚拟环境的名字,
输入命令conda activate pytorch
激活pytorch虚拟环境
3、安装pytorch
cmd命令行输入nvidia-smi,再次查看一下更新后的CUDA安装对应版本的pytorch
官网:https://pytorch.org/
pip3 install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu118
或者
conda install pytorch torchvision torchaudio pytorch-cuda=11.8 -c pytorch -c nvidia
4、pytorch检查
命令行检验
(torch2) C:\Windows\System32>python
Python 3.9.16 | packaged by conda-forge | (main, Feb 1 2023, 21:28:38) [MSC v.1929 64 bit (AMD64)] on win32
Type "help", "copyright", "credits" or "license" for more information.
>>> import torch
>>> torch.cuda.is_available()
True
>>>
代码检验
import torch
print(torch.__version__)#打印当前PyTorch版本号。
print(torch.version.cuda)#打印当前CUDA版本号。
print(torch.backends.cudnn.version())# 打印当前cuDNN版本号。
print(torch.cuda.get_device_name(0))# 打印第一个GPU设备的名称。
显示
2.0.1+cu118
11.8
8700
NVIDIA GeForce RTX 3060
pip 清华镜像
-i https://pypi.tuna.tsinghua.edu.cn/simple
pip install scipy -i https://pypi.tuna.tsinghua.edu.cn/simple
pip install scipy -i https://pypi.tuna.tsinghua.edu.cn/simple