【Pytorch框架安装——笔记】Anaconda安装Pytorch详解教程

本文详细介绍了如何通过conda创建并激活Python环境,安装特定版本的PyTorch及其依赖,包括CUDA和cuDNN。之后,通过命令行验证了PyTorch、CUDA和cuDNN的安装与版本,并提到了使用清华镜像源加速pip安装Scipy的过程。

1、查看conda 版本

cmd进入窗口
nvidia-smi

在这里插入图片描述
conda --version将输出当前安装的Anaconda或Miniconda版本号。

nvcc -V

测试安装情况

日常使用中
系统升级可能导致nvcc -V失效
查看安装
在这里插入图片描述
缺少NVIDIA CUDA 相关完整版如下

在这里插入图片描述

重新安装cuda,参考链接相关链接
(1)英伟达官网英伟达官网

在这里插入图片描述
版本选择,11.80
在这里插入图片描述
在这里插入图片描述
(2)解压安装
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
结束后
添加环境变量
在这里插入图片描述

4、cudnn

C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.8\extras\demo_suite> bandwidthTest.exe
[CUDA Bandwidth Test] - Starting...
Running on...

 Device 0: NVIDIA GeForce RTX 3060
 Quick Mode

 Host to Device Bandwidth, 1 Device(s)
 PINNED Memory Transfers
   Transfer Size (Bytes)        Bandwidth(MB/s)
   33554432                     23579.9

 Device to Host Bandwidth, 1 Device(s)
 PINNED Memory Transfers
   Transfer Size (Bytes)        Band
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值