重要参考
使用Gensim模块训练词向量 - 知乎
完整代码
import jieba.analyse
import codecs
#以写的方式打开原始的简体中文语料库
f=codecs.open('D:\Asian elephant\\biye\Spatial relation extraction\Train word vectors yourself\yuliao.txt','r',encoding="utf8")
#将分完词的语料写入到wiki_jian_zh_seg-189.5.txt文件中
target = codecs.open("D:\Asian elephant\\biye\Spatial relation extraction\Train word vectors yourself\yuliao_fencihou.txt.txt", 'w',encoding="utf8")
print('open files')
line_num=1
line = f.readline()
#循环遍历每一行,并对这一行进行分词操作
#如果下一行没有内容的话,就会readline会返回-1,则while -1就会跳出循环
while line:
print('---- processing ', line_num, ' article----------------')
line_seg = " ".join(jieba.cut(line))
target.writelines(line_seg)
line_num = line_num + 1
line = f.readline()
import logging
import os.path
import sys
import multiprocessing
from gensim.models import Word2Vec
from gensim.models.word2vec import LineSentence
#程序的入口
#1.如果当前脚本文件做模块供其他程序使用的话,不会执行if __name__ == '__main__':中的内容
#2.如果直接执行当前的额脚本文件的话,执行if __name__ == '__main__':中的内容
#1.os.path.basename('g://tf/code') ==>code
#2.sys.argv[0]获取的是脚本文件的文件名称
program = os.path.basename(sys.argv[0])
#指定name,返回一个名称为name的Logger实例
logger = logging.getLogger(program)
#1.format: 指定输出的格式和内容,format可以输出很多有用信息,
#%(asctime)s: 打印日志的时间
#%(levelname)s: 打印日志级别名称
#%(message)s: 打印日志信息
logging.basicConfig(format='%(asctime)s: %(levelname)s: %(message)s')
logging.root.setLevel(level=logging.INFO)
#打印这是一个通知日志
logger.info("running %s" % ' '.join(sys.argv))
# check and process input arguments
#inp:分好词的文本
#outp1:训练好的模型
#outp2:得到的词向量
inp, outp1, outp2 = [ "yuliao_fencihou.txt.txt", "model_name.model", "word2vec.vector"]
'''
LineSentence(inp):格式简单:一句话=一行; 单词已经过预处理并被空格分隔。
size:是每个词的向量维度;
window:是词向量训练时的上下文扫描窗口大小,窗口为5就是考虑前5个词和后5个词;
min-count:设置最低频率,默认是5,如果一个词语在文档中出现的次数小于5,那么就会丢弃;
workers:是训练的进程数(需要更精准的解释,请指正),默认是当前运行机器的处理器核数。这些参数先记住就可以了。
sg ({0, 1}, optional) – 模型的训练算法: 1: skip-gram; 0: CBOW
alpha (float, optional) – 初始学习率
iter (int, optional) – 迭代次数,默认为5
'''
model = Word2Vec(LineSentence(inp), size=100, window=5, min_count=0, sg=1,workers=multiprocessing.cpu_count())
model.save(outp1)
#不以C语言可以解析的形式存储词向量
model.wv.save_word2vec_format(outp2, binary=False)
训练结果
分词结果(不佳)
向量结果