这篇文章将详细介绍如何使用 Hugging Face 平台下载和调用 Llama 模型,并提供代码示例用于测试。
Hugging Face
Hugging Face 是一家专注于人工智能和自然语言处理(NLP)的公司,以其开源工具和模型生态系统而闻名。它提供了丰富的工具链,包括:
-
Transformers:加载、微调和部署预训练模型。
-
Datasets:用于高效加载和处理数据集。
-
Hugging Face Hub:开源模型和数据集托管平台。
通过 Hugging Face,开发者可以方便地访问各种预训练模型,并快速部署到自己的项目中。
1. 注册 Hugging Face 账号
首先,进入 Hugging Face 官网,注册一个账号。这一步没什么好讲的,不再赘述。
2. 申请模型访问权限
Llama 模型是受限制的资源,使用前需要申请访问权限。以下是具体步骤:
2.1 搜索并选择模型
-
登录后,点击顶部导航栏的 “Models”。
-
在搜索栏输入
llama
,找到目标模型并点击进入。
2.2 提交申请
进入模型页面后,点击 “Expand to review access” 按钮展开许可说明。
-
滑动到页面底部,填写申请信息。
-
填写内容不用完全真实,但尽量不要太离谱。
-
提交申请后,等待管理员审批。
2.3 查看申请状态
-
点击头像,进入 “Settings”。
-
左侧菜单选择 “Gated Repositories” 。
-
查看申请状态,状态变为
ACCEPTED
即表示通过。
通常审批时间在半小时左右。
3. 获取 Access Token
-
在 “Settings” 页面,点击左侧的 “Access Tokens” 。
-
点击 “Create new token” 按钮。
- 在弹出框中选择
Read
权限,输入 Token 名称并点击 “Create Token”。
- 复制生成的 Token,后续用于模型下载。
使用 Python 下载并调用 Llama 模型
1. 安装依赖
在运行代码前,需要安装必要的 Python 库:
pip install transformers torch
2. 代码实现
以下是一个简单的调用示例,将 Hugging Face Token 替换为你自己的 Token 即可运行。
创建一个名为 demo.py
的文件,粘贴以下代码:
from transformers import AutoTokenizer, AutoModelForCausalLM
import transformers
import torch
# 模型名称
model = "meta-llama/Llama-3.2-1B"
# Hugging Face Token
auth_token = "hf_xxxxxxxxxxxxx"
# 加载模型和分词器
tokenizer = AutoTokenizer.from_pretrained(model, token=auth_token)
model = AutoModelForCausalLM.from_pretrained(model, token=auth_token)
model.config.pad_token_id = tokenizer.eos_token_id
# 构建文本生成流水线
pipeline = transformers.pipeline(
"text-generation",
model=model,
tokenizer=tokenizer,
torch_dtype=torch.float16,
device_map="auto",
framework="pt"
)
# 输入提示文本
prompt = "<s>[INST] 你认为学习的意义是什么? [/INST]"
# 模型生成
sequences = pipeline(
prompt,
do_sample=True, # 使用采样策略
top_k=10, # 采样时只保留前 k 个最高概率的 token
num_return_sequences=4, # 返回生成序列数量
return_full_text=False, # 只返回生成文本
max_length=500, # 最大生成长度
temperature=0.7, # 随机性控制
repetition_penalty=1.2, # 重复惩罚因子
pad_token_id=tokenizer.eos_token_id,
eos_token_id=tokenizer.eos_token_id,
truncation=True # 超长截断
)
# 输出结果
for seq in sequences:
response = seq['generated_text'].split('[/INST]')[-1].strip()
print(f"AI: {response}")
3. 运行代码
执行以下命令运行代码:
python demo.py
首次运行会从 Hugging Face 自动下载模型,完成后会生成结果。
4. 示例输出
结语
至此,我们成功演示了如何通过 Hugging Face 的 Transformers 调用 Llama 模型,并获取了模型的回答。
但是如果你的需求只是简单地调用模型,而无需进行微调或复杂的部署,可以尝试使用 Ollama。它不仅操作更加便捷,还提供了开箱即用的 RESTful 接口,适合快速集成到生产环境中。
下一篇,我将会讲解如何通过 Ollama 下载部署 Llama 模型并调用。
相关链接
-
Hugging Face 官网:https://huggingface.co/
-
Llama 模型主页:https://huggingface.co/meta-llama
如何学习AI大模型?
大模型时代,火爆出圈的LLM大模型让程序员们开始重新评估自己的本领。 “AI会取代那些行业?
”“谁的饭碗又将不保了?
”等问题热议不断。
不如成为「掌握AI工具的技术人」
,毕竟AI时代,谁先尝试,谁就能占得先机!
想正式转到一些新兴的 AI 行业,不仅需要系统的学习AI大模型。同时也要跟已有的技能结合,辅助编程提效,或上手实操应用,增加自己的职场竞争力。
但是LLM相关的内容很多,现在网上的老课程老教材关于LLM又太少。所以现在小白入门就只能靠自学,学习成本和门槛很高
那么我作为一名热心肠的互联网老兵,我意识到有很多经验和知识值得分享给大家,希望可以帮助到更多学习大模型的人!至于能学习到多少就看你的学习毅力和能力了 。我已将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】
👉 福利来袭
CSDN大礼包:《2025最全AI大模型学习资源包》免费分享,安全可点 👈
全套AGI大模型学习大纲+路线
AI大模型时代的学习之旅:从基础到前沿,掌握人工智能的核心技能!
640套AI大模型报告合集
这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。
👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;
• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;
• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;
• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。
👉 福利来袭
CSDN大礼包:《2025最全AI大模型学习资源包》免费分享,安全可点 👈
这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】
作为普通人,入局大模型时代需要持续学习和实践,不断提高自己的技能和认知水平,同时也需要有责任感和伦理意识,为人工智能的健康发展贡献力量。