大模型入门实战:通过 HuggingFace 调用 Llama3

这篇文章将详细介绍如何使用 Hugging Face 平台下载和调用 Llama 模型,并提供代码示例用于测试。

Hugging Face

Hugging Face 是一家专注于人工智能和自然语言处理(NLP)的公司,以其开源工具和模型生态系统而闻名。它提供了丰富的工具链,包括:

  • Transformers:加载、微调和部署预训练模型。

  • Datasets:用于高效加载和处理数据集。

  • Hugging Face Hub:开源模型和数据集托管平台。

通过 Hugging Face,开发者可以方便地访问各种预训练模型,并快速部署到自己的项目中。

1. 注册 Hugging Face 账号

首先,进入 Hugging Face 官网,注册一个账号。这一步没什么好讲的,不再赘述。

2. 申请模型访问权限

Llama 模型是受限制的资源,使用前需要申请访问权限。以下是具体步骤:

2.1 搜索并选择模型

  1. 登录后,点击顶部导航栏的 “Models”

  2. 在搜索栏输入 llama,找到目标模型并点击进入。

在这里插入图片描述

2.2 提交申请

进入模型页面后,点击 “Expand to review access” 按钮展开许可说明。

在这里插入图片描述

  1. 滑动到页面底部,填写申请信息。

  2. 填写内容不用完全真实,但尽量不要太离谱。

  3. 提交申请后,等待管理员审批。

在这里插入图片描述

2.3 查看申请状态

  1. 点击头像,进入 “Settings”

  2. 左侧菜单选择 “Gated Repositories”

  3. 查看申请状态,状态变为 ACCEPTED 即表示通过。

通常审批时间在半小时左右。

在这里插入图片描述

3. 获取 Access Token

  1. “Settings” 页面,点击左侧的 “Access Tokens”

  2. 点击 “Create new token” 按钮。

在这里插入图片描述

  1. 在弹出框中选择 Read 权限,输入 Token 名称并点击 “Create Token”

在这里插入图片描述

  1. 复制生成的 Token,后续用于模型下载。

在这里插入图片描述

使用 Python 下载并调用 Llama 模型

1. 安装依赖

在运行代码前,需要安装必要的 Python 库:

pip install transformers torch   

2. 代码实现

以下是一个简单的调用示例,将 Hugging Face Token 替换为你自己的 Token 即可运行。

创建一个名为 demo.py 的文件,粘贴以下代码:

from transformers import AutoTokenizer, AutoModelForCausalLM
import transformers
import torch

# 模型名称
model = "meta-llama/Llama-3.2-1B"
# Hugging Face Token
auth_token = "hf_xxxxxxxxxxxxx"

# 加载模型和分词器
tokenizer = AutoTokenizer.from_pretrained(model, token=auth_token)
model = AutoModelForCausalLM.from_pretrained(model, token=auth_token)
model.config.pad_token_id = tokenizer.eos_token_id

# 构建文本生成流水线
pipeline = transformers.pipeline(
    "text-generation",
    model=model,
    tokenizer=tokenizer,
    torch_dtype=torch.float16,
    device_map="auto",
    framework="pt"
)

# 输入提示文本
prompt = "<s>[INST] 你认为学习的意义是什么? [/INST]"

# 模型生成
sequences = pipeline(
    prompt,
    do_sample=True,  # 使用采样策略
    top_k=10,        # 采样时只保留前 k 个最高概率的 token
    num_return_sequences=4,  # 返回生成序列数量
    return_full_text=False,  # 只返回生成文本
    max_length=500,          # 最大生成长度
    temperature=0.7,         # 随机性控制
    repetition_penalty=1.2,  # 重复惩罚因子
    pad_token_id=tokenizer.eos_token_id,
    eos_token_id=tokenizer.eos_token_id,
    truncation=True          # 超长截断
)

# 输出结果
for seq in sequences:
    response = seq['generated_text'].split('[/INST]')[-1].strip()
    print(f"AI: {response}")

3. 运行代码

执行以下命令运行代码:

python demo.py   

首次运行会从 Hugging Face 自动下载模型,完成后会生成结果。

4. 示例输出

在这里插入图片描述

结语

至此,我们成功演示了如何通过 Hugging Face 的 Transformers 调用 Llama 模型,并获取了模型的回答。

但是如果你的需求只是简单地调用模型,而无需进行微调或复杂的部署,可以尝试使用 Ollama。它不仅操作更加便捷,还提供了开箱即用的 RESTful 接口,适合快速集成到生产环境中。

下一篇,我将会讲解如何通过 Ollama 下载部署 Llama 模型并调用。

相关链接

  • Hugging Face 官网:https://huggingface.co/

  • Llama 模型主页:https://huggingface.co/meta-llama

如何学习AI大模型?

大模型时代,火爆出圈的LLM大模型让程序员们开始重新评估自己的本领。 “AI会取代那些行业?”“谁的饭碗又将不保了?”等问题热议不断。

不如成为「掌握AI工具的技术人」,毕竟AI时代,谁先尝试,谁就能占得先机!

想正式转到一些新兴的 AI 行业,不仅需要系统的学习AI大模型。同时也要跟已有的技能结合,辅助编程提效,或上手实操应用,增加自己的职场竞争力。

但是LLM相关的内容很多,现在网上的老课程老教材关于LLM又太少。所以现在小白入门就只能靠自学,学习成本和门槛很高

那么我作为一名热心肠的互联网老兵,我意识到有很多经验和知识值得分享给大家,希望可以帮助到更多学习大模型的人!至于能学习到多少就看你的学习毅力和能力了 。我已将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

👉 福利来袭CSDN大礼包:《2025最全AI大模型学习资源包》免费分享,安全可点 👈

全套AGI大模型学习大纲+路线

AI大模型时代的学习之旅:从基础到前沿,掌握人工智能的核心技能!

img

640套AI大模型报告合集

这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。

在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

👉学会后的收获:👈
基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;

能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;

• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;

能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。

👉 福利来袭CSDN大礼包:《2025最全AI大模型学习资源包》免费分享,安全可点 👈

img

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

作为普通人,入局大模型时代需要持续学习和实践,不断提高自己的技能和认知水平,同时也需要有责任感和伦理意识,为人工智能的健康发展贡献力量。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值