Flink中开窗的延迟触发、侧输出流的应用

Flink中开窗的延迟触发、侧输出流的应用

注意如何处理迟到数据和侧数据流♥:
flink 解决乱序事件:
1.设定eventTime 和 waterMark 通过延时时长,使窗口等待一定时间以后再触发
2.如果窗口已经触发了,还有数据没有来,那就使用允许迟到时间 (allowedLateness)此时窗口虽然被触发了但是没有关闭,等数据来了再次触发
3.若允许迟到时间过了,还有数据没有来,那就使用将数据放入侧输出流
流程图示意如下:
在这里插入图片描述

import java.time.Duration

import org.apache.flink.api.common.eventtime.{SerializableTimestampAssigner, WatermarkStrategy}
import org.apache.flink.streaming.api.scala._
import org.apache.flink.streaming.api.windowing.assigners.TumblingEventTimeWindows
import org.apache.flink.streaming.api.windowing.time.Time
import org.example.bean.TrainAlarm

object AssignEventTimeAndWm3 {
  def main(args: Array[String]): Unit = {
    val env = StreamExecutionEnvironment.getExecutionEnvironment
    env.setParallelism(1)
    val inputStream= env.socketTextStream("master", 666)
      .map(line => {
        val ps = line.split(",")
        TrainAlarm(ps(0), ps(1).toLong, ps(2).toDouble)
      })
      .assignTimestampsAndWatermarks(
      //Duration 设置延时时长 watermark = 当前已经到达的最大eventTime - 延时时长
      //只要比watermark小的窗口就可以触发
      WatermarkStrategy.forBoundedOutOfOrderness(Duration.ofSeconds(5))
        .withTimestampAssigner(new SerializableTimestampAssigner[TrainAlarm] {
          //设置eventTime是哪个字段
          override def extractTimestamp(element: TrainAlarm, l: Long): Long = {
            element.ts*1000L
          }
        })
    )

    val lateTag = new OutputTag[TrainAlarm]("late")

    val rst = inputStream.keyBy(_.id)
      .window(TumblingEventTimeWindows.of(Time.seconds(5)))
      //窗口触发之后不会关闭,会等待迟到数据,1分钟后才会关闭
      .allowedLateness(Time.minutes(1))
      //如果一分钟以后还没有到则放入侧输出流
      .sideOutputLateData(lateTag)
      .max("temp")

    rst.print()
    print("late===>")
    rst.getSideOutput(lateTag).print()

     env.execute()
  }
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值