Luogu P5018 对称二叉树

本文深入探讨了暴力搜索算法在特定问题中的应用,通过详细的代码示例展示了如何利用暴力搜索解决树形结构的数据比较问题,包括节点值的对比、子树的匹配等。文章强调了即使是最基础的暴力算法也能有效解决问题,并分析了其时间复杂度。
摘要由CSDN通过智能技术生成

看题面戳我

这算是普及组史上最简单的压轴题了吧!

考场上为啥有人连看起来n^2的暴力都不写呢?tg蒟蒻发问

最基础的暴力都能过了!

暴力搜索,暴力判断(如果大小不一样直接返回0,否则继续递归判断),连剪枝都不用

——————————————————————————————————————————————————

看起来n^2这句话很耐人寻味

Q:这不是n^2?

A:错,是n lg n

首先暴力判断大小是否一样,最坏的情况下就是每个结点都要判断,所以最坏就构成了一棵满二叉树

所以总共有lg n层,故有nlgn

时间复杂度还可以用主定理等方法来证明,就这个有普及+的难度了吧

代码巨短

#include<cstdio>
#include<iostream>
using namespace std;

const int N=1e6+5;
int n,a[N],lc[N],rc[N],ans,s[N];

void dfs(int u)
{
	s[u]=1;
	if(lc[u]!=-1) dfs(lc[u]),s[u]+=s[lc[u]];
	if(rc[u]!=-1) dfs(rc[u]),s[u]+=s[rc[u]];
}

bool check(int u,int v)
{
	if(u==v) return 1;
	if(u==-1||v==-1) return 0;
	if(a[u]!=a[v]) return 0;
	if(!check(lc[u],rc[v])) return 0;
	if(!check(rc[u],lc[v])) return 0;
	return 1;
}

void dfs1(int u)
{
	if(ans>s[u]) return;
	if(lc[u]!=-1) dfs1(lc[u]);
	if(rc[u]!=-1) dfs1(rc[u]);
	if(check(lc[u],rc[u])) 
	{
		ans=max(ans,s[u]); return;
	}
}

int main()
{
	scanf("%d",&n);
	for(int i=1;i<=n;i++) scanf("%d",&a[i]);
	for(int i=1;i<=n;i++) scanf("%d%d",&lc[i],&rc[i]);
	ans=1;
	dfs(1),dfs1(1);
	printf("%d\n",ans);
	return 0;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值