下文以sentinel-1的GRD数据为例,介绍使用SNAP软件进行预处理的步骤:应用轨道文件、热噪声去除、辐射定标、(多视处理)、斑点滤波、地形校正、协方差矩阵生成、后向散射系数由线性转化为分贝计量等流程化处理。
0.0环境配置
上图步骤应该是改不改都可以,点击第三步的时候,我报错了,直接不改了,下面依然可以对影像进行处理。
预处理过程
1.打开影像文件
双击影像,打开bands波段,双击 Intensity_VH 波段以显示栅格数据
右击影像,可打开RGB色彩影像
2. 加载轨道数据文件(Orb)
点击radar -> apply orbit file -> run 。注意需要联网自动下载轨道文件,设置好输出文件夹。在processing parameters,勾选上do not fail if new orbit file is not found。
3. 热噪音去除(tnr)
Sentinel-1 影像受到热噪声的影响,热噪声的来源是 SAR 卫星系统的噪声,也可认为是背景噪声。热噪声去除操作可以对整个Sentinel-1场景中的后向散射信号进行归一化,从而减少子带纹理中的噪声。
上方出现一串红字,表示 操作完成
4. 辐射定标(Cal)
SAR 辐射定标的目的是将其像素值与某地区的后向散射进行关联,将接收的信号转化为后向散射系数,使每个像素值可以反映某地区实际的后向散射情况。影像经过校准,可以直接与相同或不同传感器收集的影像进行比较。(注意输入放入文件,是上一步处理好的)
5. 多视处理Radar>SAR Utilities>Multilooking
注意,只有SLC类型数据才需要多视处理,GRD不需要多视处理,他是经过多视处理后的产品,已经进行了检测和多视平均,以降低噪声和斑点,但牺牲了相位信息。
但在多视之前,应采用-脉冲带拼接 TOPSAR-Deburst。因为IW的成像模式有三幅子图像所以要做这一步进行子图像的拼接过程
Radar>Sentinel-1 TOPS> TOPS deburst。此步骤将deburst合并为一个图像,以便于数据解释和分析。
6.斑点滤波(Spk)
微波波段的相干噪声会降低 SAR 影像的质量,使影像中存在颗粒噪声形式的斑点。因此需要通过斑点滤波进行斑点噪声的抑制处理来提高图像质量。为去除数据中的相干斑噪声,使用 Refined Lee滤波器,它是一种能够根据区域自动调整滤波窗口的自适应滤波器,并且能够保留地物的边缘信息。
7.极化矩阵生成(mat)
Radar>Polarimetric>Polarimetric Matrix Generation
生成协方差矩阵(如C2)的意义在于:
- 保留多极化通道的完整散射信息(幅度+相位相关性)。
- 为极化分解、分类和目标检测提供统计建模基础。
- 通过多视处理平衡分辨率和噪声。
- 标准化数据格式,便于后续分析和跨平台处理。
在SNAP中生成协方差矩阵是极化SAR数据预处理的核心步骤,为后续高级分析(如地物分类、目标识别)提供可靠的数据输入。
注:协方差矩阵和地形校正、分贝转换顺序不能错,并且极化矩阵要在地形校正之前,不然会报错,我就报错啦呜呜呜
(SLC数据是复数格式(包含实部与虚部),而地形校正(如Range-Doppler或DEM-Based Terrain Correction)的输出可能是地理编码后的 实数值数据(如GeoTIFF格式),导致后续极化矩阵生成步骤因输入数据类型不符而报错。)
- 必须先生成协方差矩阵:
协方差矩阵的计算依赖于原始线性功率值的复数运算,分贝转换需在此之后进行。 - 分贝转换是后处理步骤:
仅用于后向散射系数的可视化或定量分析,不参与协方差矩阵的生成。
8. 地形校正与地理编码-距离多普勒地形校正(TC)
SAR 是侧视成像,存在由于地形起伏造成的几何变形,地形校正的目的就是修正这些扭曲,使图像的几何尽可能接近真实世界,此过程使用联网下载的DEM 数据。
9. 后向散射系数由线性转化为分贝计量(dB)
系数分布更加均匀,减少极端值,数据整体更符合高斯分布,这里将影像的后向散射系数进行对数化处理,转化为分贝计量的后向散射系数。
10最终输出影像
上述操作得到的是线性后向散射系数,其值通常是很小的正值,为了使后向散射
(感觉SNAP软件好慢啊,要经过漫长的等待,难道是我的文件和区域太大了?)
最近刚刚接触snap和sar,请各位批评指正哈哈!