浅谈欧拉公式


欧拉公式是数学里最令人着迷的公式之一,它将指数函数的定义域扩大到复数域,建立了指数函数和三角函数的关系。
欧拉公式的表达式为:
e i θ = c o s θ + i s i n θ e^{i\theta }=cos\theta+isin\theta eiθ=cosθ+isinθ

欧拉公式的推导

在推导之前,首先了解级数的概念
级数,指将数列的项依次用加号连接起来的函数
一般形式为:
∑ i = 1 ∞ a i = a 1 + a 2 + . . . \sum_{i=1}^{\infty }a_{i}=a_{1}+a_{2}+... i=1ai=a1+a2+...
根据级数的散敛,可以分为收敛级数和发散级数,收敛可以进一步分为绝对收敛和普通收敛,这里的绝对收敛要比普通收敛要多很多限制哈,具体自己百度~那么发散也分为两种,一种是发散到无穷大,一种是在几个或无穷个数值摆动。
每一项都为幂数的形式称为幂级数,表达式如下:
∑ n = 0 ∞ a n ( x − x 0 ) n = a 0 + a 1 ( x − x 0 ) + a 2 ( x − x 0 ) 2 + . . . + a n ( x − x n ) n + . . . \sum_{n=0}^{\infty }a_{n}(x-x_{0})^{n}=a_{0}+a_{1}(x-x_{0})+a_{2}({x-x_{0}})^{2}+...+a_{n}(x-x_{n})^{n}+... n=0an(xx0)n=a0+a1(xx0)+a2(xx0)2+...+an(xxn)n+...
当x=0时,
∑ n = 0 ∞ a n x n = a 0 + a 1 x + a 2 x 2 + . . . + a n x n + . . . \sum_{n=0}^{\infty }a_{n}x^{n}=a_{0}+a_{1}x+a_{2}{x}^{2}+...+a_{n}x^{n}+... n=0anxn=a0+a1x+a2x2+...+anxn+...
其中
lim ⁡ n → ∞ a n a n + 1 = R \lim_{n\rightarrow \infty }\frac{a_{n}}{a_{n+1}}=R nliman+1an=R
则收敛区间为[-R, R]

因此,任何一个函数都可以转换为幂级数,若最终的幂级数表现形式为
f ( x ) = a 0 + a 1 x + a 2 x 2 + . . . + a n x n + . . . f(x)=a_{0}+a_{1}x+a_{2}{x}^{2}+...+a_{n}x^{n}+... f(x)=a0+a1x+a2x2+...+anxn+...
则需要将以上系数全部求出来
当 x = 0 时 , a 0 = f ( 0 ) 当x=0时,a_{0}=f(0) x=0a0=f(0)
对f(x)进行求导,则可以求出a1,依次类推,可以求出所有系数,即
a n = f n ( 0 ) n ! a_{n}=\frac{f^{n}(0)}{n!} an=n!fn(0)

f ( x ) = ∑ n = 0 ∞ f n ( 0 ) n ! x n f(x)=\sum_{n=0}^{\infty }\frac{f^{n}(0)}{n!}x^{n} f(x)=n=0n!fn(0)xn
以上就是著名的麦克劳林公式。
若x≠0,则有
a n = f n ( x 0 ) n ! a_{n}=\frac{f^{n}(x_{0})}{n!} an=n!fn(x0)
所以
f ( x ) = ∑ n = 0 ∞ f n ( x 0 ) n ! ( x − x 0 ) n f(x)=\sum_{n=0}^{\infty }\frac{f^{n}(x_{0})}{n!}(x-x_{0})^{n} f(x)=n=0n!fn(x0)(xx0)n
以上为泰勒公式。

所以:
e x = 1 + x 1 ! + x 2 2 ! + x 3 3 ! + . . . ① e^{x}=1+\frac{x}{1!}+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+...① ex=1+1!x+2!x2+3!x3+...
c o s x = 1 − x 2 2 ! + x 4 4 ! − x 6 6 ! + . . . ② cos x=1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-\frac{x^{6}}{6!}+...② cosx=12!x2+4!x46!x6+...
s i n x = x − x 3 3 ! + x 5 5 ! − x 7 7 ! + . . . ③ sin x=x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\frac{x^{7}}{7!}+...③ sinx=x3!x3+5!x57!x7+...
将ix代入①式的x中,则
e i x = 1 + i x 1 ! − x 2 2 ! + i x 3 3 ! + . . . = ( 1 − x 2 2 ! + . . . ) + i ( x − x 3 3 ! + . . . ) e^{ix}=1+\frac{ix}{1!}-\frac{x^{2}}{2!}+\frac{ix^{3}}{3!}+...=(1-\frac{x^{2}}{2!}+...)+i(x-\frac{x^{3}}{3!}+...) eix=1+1!ix2!x2+3!ix3+...=(12!x2+...)+i(x3!x3+...)
将②和③代入上式中
e i θ = c o s θ + i s i n θ e^{i\theta }=cos\theta+isin\theta eiθ=cosθ+isinθ

欧拉公式的意义

在这里插入图片描述
以上图可以看出欧拉式描述的是随时间变化,在复平面上运动的点,随时间变化在时间轴上成为螺旋线。只看其实数部分,即螺旋线左侧的投影,是最基本的余弦功能,右边的投影是正弦函数。

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值