Ubuntu17.10 安装 TensorFlow 1.4的GPU版本,包含CUDA,cuDNN


1.查看当前配置

ubuntu@ubuntu-Z87P-D3:~/下载$ uname -m && cat /etc/*release


2.下载

【CUDA官方下载】https://developer.nvidia.com/cuda-downloads

大多数人会用到的链接:

https://developer.nvidia.com/cuda-downloads?target_os=Linux&target_arch=x86_64&target_distro=Ubuntu&target_version=1704&target_type=deblocal


dpkg是执行本地的安装文件,所以要先进入当前路径

dpkg命令:

-i:安装软件包;
-r:删除软件包;
-P:删除软件包的同时删除其配置文件;
-L:显示于软件包关联的文件;
-l:显示已安装软件包列表;
--unpack:解开软件包;
-c:显示软件包内文件列表;
--confiugre:配置软件包。

得先定位到放deb包的位置才行。
比如下载在/home/username/download的话,得先用cd /home/username/downlaod定位到相应的目录下。若Terminal位置都不在放文件的目录里面自然会提示找不到文件。然后DPKG
获取文件路径:可视化界面查看,进入文件中,输入 Ctrl+L

安装key时照着nvidia说明书无限出错,按照界面给你的要求来写:

剩下两步按照nvidia说明书照旧。

3.cuDNN

https://developer.nvidia.com/rdp/cudnn-download

必须先注册,找到指定目标下载。因为很好下,更新速度也很快,所以貌似也没人分享资料


命令1: tar -zxf cudnn-9.1-linux-x64-v7.tgz && cd cuda   #解压缩文件包并且直接进入

命令2:ubuntu@ubuntu-Z87P-D3:~/下载/cuda$ sudo cp include/cudnn.h /usr/local/cuda-9.1/include/


命令3:ubuntu@ubuntu-Z87P-D3:~/下载/cuda$ sudo cp lib64/libcudnn* /usr/local/cuda-9.1/lib64

将目录下四个文件拷贝过去,手动操作也是可行的

4.安装libcupti-dev安装包
ubuntu@ubuntu-Z87P-D3:~$ sudo apt-get install libcupti-dev

一个小小的依赖文件

5.变量设置

1.5.变量设置

#!/bin/sh
# Author:wangxiaolei 王小雷
# Blog: http://blog.csdn.net/dream_an
# Github: https://github.com/wangxiaoleiai
# Date: 201707
# Organization: https://github.com/whaleai

export CUDA_HOME=/usr/local/cuda-8.0
export PATH=$CUDA_HOME/bin:$PATH
export LD_LIBRARY_PATH=$CUDA_HOME/lib64
  • 1
  • 2
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 1

2.安装tensorflow-gpu

可以通过python2或者python3的安装,博主使用的是python3。

2.1.安装依赖

xiaolei@wang:~$ sudo apt-get install python-pip python-dev   # for Python 2.7
xiaolei@wang:~$ sudo apt-get install python3-pip python3-dev # for Python 3.n
  • 1
  • 2

2.2.安装tensorflow-gpu版本

xiaolei@wang:~$ pip install tensorflow-gpu  # Python 2.7;  GPU support
xiaolei@wang:~$ spip3 install tensorflow-gpu # Python 3.n; GPU support
  • 1
  • 2

这里写图片描述

3.测试tensorflow-gpu

xiaolei@wang:~$ python3
  • 1
import tensorflow as tf
hello = tf.constant('Hello, TensorFlow!')
sess = tf.Session()
print(sess.run(hello))
  • 1
  • 2
  • 3
  • 4

这里写图片描述

可以看到已经使用GPU了!完结-成功

1.彩蛋-卸载方法

xiaolei@wang:~$ sudo pip uninstall tensorflow  # for Python 2.7
xiaolei@wang:~$ sudo pip3 uninstall tensorflow # for Python 3.n
  • 1
  • 2

2.彩蛋-官网给出的常见错误处理方法

https://www.tensorflow.org/install/install_sources#common_installation_problems


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值