Flood Fill 算法详解与实战:以岛屿数量为例

 🎇🎇🎇🎇🎇🎇🎇🎇🎇🎇🎇🎇🎇🎇🎇🎇🎇🎇🎇🎇

                                    ⭐FloodFill⭐

🎇🎇🎇🎇🎇🎇🎇🎇🎇🎇🎇🎇🎇🎇🎇🎇🎇🎇🎇🎇


前言

Flood Fill算法,也被称为种子填充算法,是一种在计算机图形学和图像处理中广泛使用的算法。它的主要用途是从一个给定的起始点(称为“种子”)开始,填充与该点颜色相同且相连的区域。这个过程类似于洪水从一个点开始蔓延到周围的连通区域,直到遇到边界或不同的颜色。


1. 工作原理

  1. 选择起始点:用户选择一个起始点(通常是图像中的一个像素),作为填充操作的起点。
  2. 检查当前点:算法会检查当前点的颜色是否符合填充条件(比如,是否是目标颜色)。
  3. 改变颜色:如果符合条件,则将当前点的颜色更改为新的指定颜色。
  4. 递归或迭代扩展:接着,算法会检查当前点周围相邻的点,并重复步骤2和3。这个过程可以递归地进行,也可以使用队列或栈来迭代实现。
  5. 停止条件:当所有符合条件的相邻点都被处理过后,算法就会停止。

2. 实现方式

Flood Fill算法通常有两种实现方法:

  • 深度优先搜索 (DFS): 使用递归或显式堆栈来进行填充。每次找到一个符合条件的点时,就立即深入探索其邻居。
  • 广度优先搜索 (BFS): 使用队列来实现。先处理起始点,然后依次处理它所有的直接邻居,再处理这些邻居的邻居,以此类推。

3. 应用场景

图像编辑软件:如Photoshop等软件中的油漆桶工具。

游戏开发:例如扫雷游戏中点击空白处展开相邻格子的功能。

地图着色:在地图上标记特定区域。

数据可视化:热力图、地形渲染等。

计算机视觉:图像分割、边缘检测等。


4. 示例代码模板

下面是一个简单的Flood Fill算法示例,使用了深度优先搜索(DFS)来实现:

public class FloodFill {
    private static final int[] dx = {0, 0, -1, 1};
    private static final int[] dy = {-1, 1, 0, 0};

    public void floodFill(char[][] grid, int x, int y, char oldColor, char newColor) {
        // 检查坐标是否越界
        if (x < 0 || y < 0 || x >= grid.length || y >= grid[0].length) return;
        // 如果不是旧颜色或者已经是新颜色,不需要填充
        if (grid[x][y] != oldColor || grid[x][y] == newColor) return;

        // 更改当前点的颜色
        grid[x][y] = newColor;

        // 对当前点的四个方向递归调用floodFill
        for (int i = 0; i < 4; i++) {
            floodFill(grid, x + dx[i], y + dy[i], oldColor, newColor);
        }
    }
}

这段代码定义了一个floodFill方法,接受一个二维字符数组grid表示图像,以及两个坐标xy作为起始点,还有需要替换的旧颜色oldColor和新颜色newColor。通过递归的方式,它会把从起始点开始的所有连续的oldColor都替换成newColor


5: 经典例题 : 岛屿数量(medium)

题⽬链接:200. 岛屿数量 - 力扣(LeetCode)

算法思路

目的:找出二维网格中不相连的所有'1'(代表陆地)的集合个数。

步骤

  1. 遍历网格中的每一个格子。
  2. 如果发现了一个未被访问的陆地块(值为'1'且未被标记),则增加岛屿计数。
  3. 对该陆地块进行深度优先搜索,将其以及与之相连的所有陆地块都标记为已访问。
  4. 继续遍历直到检查完所有的格子。

代码实现

class Solution {
    // 方向数组,用于探索四个可能的方向
    int[] dx = new int[]{0, 0, -1, 1};
    int[] dy = new int[]{1, -1, 0, 0};

    public int numIslands(char[][] grid) {
        if (grid == null || grid.length == 0) return 0;
        
        int m = grid.length;  // 行数
        int n = grid[0].length;  // 列数
        boolean[][] vis = new boolean[m][n];  // 访问标记数组
        int count = 0;  // 岛屿计数

        for (int i = 0; i < m; i++) {
            for (int j = 0; j < n; j++) {
                // 发现新的陆地并且没有被访问过
                if (grid[i][j] == '1' && !vis[i][j]) {
                    count++;  // 增加岛屿计数
                    dfs(grid, vis, i, j);  // 使用DFS淹没这个岛屿
                }
            }
        }
        return count;
    }

    private void dfs(char[][] grid, boolean[][] vis, int x, int y) {
        // 标记当前陆地为已访问
        vis[x][y] = true;

        // 探索四周的四个方向
        for (int k = 0; k < 4; k++) {
            int newX = x + dx[k];
            int newY = y + dy[k];

            // 检查新坐标是否越界,是否是陆地,是否已经访问过
            if (newX >= 0 && newX < grid.length && newY >= 0 && newY < grid[0].length
                    && grid[newX][newY] == '1' && !vis[newX][newY]) {
                // 递归调用dfs继续淹没
                dfs(grid, vis, newX, newY);
            }
        }
    }
}class Solution {
    // 方向数组,用于探索四个可能的方向
    int[] dx = new int[]{0, 0, -1, 1};
    int[] dy = new int[]{1, -1, 0, 0};

    public int numIslands(char[][] grid) {
        if (grid == null || grid.length == 0) return 0;
        
        int m = grid.length;  // 行数
        int n = grid[0].length;  // 列数
        boolean[][] vis = new boolean[m][n];  // 访问标记数组
        int count = 0;  // 岛屿计数

        for (int i = 0; i < m; i++) {
            for (int j = 0; j < n; j++) {
                // 发现新的陆地并且没有被访问过
                if (grid[i][j] == '1' && !vis[i][j]) {
                    count++;  // 增加岛屿计数
                    dfs(grid, vis, i, j);  // 使用DFS淹没这个岛屿
                }
            }
        }
        return count;
    }

    private void dfs(char[][] grid, boolean[][] vis, int x, int y) {
        // 标记当前陆地为已访问
        vis[x][y] = true;

        // 探索四周的四个方向
        for (int k = 0; k < 4; k++) {
            int newX = x + dx[k];
            int newY = y + dy[k];

            // 检查新坐标是否越界,是否是陆地,是否已经访问过
            if (newX >= 0 && newX < grid.length && newY >= 0 && newY < grid[0].length
                    && grid[newX][newY] == '1' && !vis[newX][newY]) {
                // 递归调用dfs继续淹没
                dfs(grid, vis, newX, newY);
            }
        }
    }
}

总结

FloodFill 思想正如其名,像洪水一样浇灌低谷,一般通过 BFS 或者 DFS 实现,如果你帮我主页中的回溯算法题都刷完了,写这个算法是很轻松的,就像简化版的回溯问题一样,甚至不需要剪枝。以上就是今天的内容,后续会更新更多,感谢阅览!!!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值