第十章 并查集(由子指向父的树结构)

并查集是一种高效解决网络节点连接状态查询的数据结构。通过路径压缩技术,可以显著提高查询效率。文中介绍了并查集从数组实现到树结构优化的过程,并提供了相关代码接口。
摘要由CSDN通过智能技术生成

连接问题
可以非常快的判断网络中节点的连接状态
路径压缩

第一版是用数组实现,第二版虽然也是数组,但是思路是将其想成很多树结构

代码:

public class Main{
	
	private static double testUF(UF uf, int m){
		int size = uf.getSize();
		Random random = new Random();

		long startTime = System.nanoTime();

		for (int i = 0; i < m; i ++){
			int a = random.nextInt(size);
			int b = random.nextInt(size);
			uf.unionElements(a, b);
		}

		for (int i = 0; i < m; i ++){
			int a = random.nextInt(size);
			int b = random.nextInt(size);
			uf.isConnected(a, b);
		}

		long endTime = System.nanoTime();
		return (endTime - startTime) / 1000000000.0}
	public static void main(String[] args) {

		int size = 10000;
		int m = 10000;
		UninFind1 uf1 = new UninFind1(size);
		System.out.println("UninFind1 :" + testUF(uf1, m) + "s");
		UninFind2 uf2 = new UninFind2(size);
		System.out.println("UninFind2 : " + testUF(uf2, m) + "s");
		UnionFind3 uf3 = new UnionFind3(size);
		System.out.println("UninFind3 : " + testUF(uf3, m) + "s");
		UnionFind4 uf4 = new UnionFind4(size);
		System.out.println("UninFind4 : " + testUF(uf4, m) + "s");
		UnionFind5 uf5 = new UnionFind5(size);
		System.out.println("UninFind5 : " + testUF(uf5, m) + "s");
	}	
}

接口:

public interface UF{
	int getSize();
	boolean isConnected(int p, int q);
	void unionElements(int p, int q);
}

//quick find 查找很快
public class UnionFind1 implements UF{
	private int[] id;

	public UnionFind1(int size){

		id = new int[size];
		for (int i = 0; i < id.length; i ++){
			id[i] = i;
		}
	}

	@Override
	public int getSize(){
		return id.length;
	}

	//查找元素p所对应的集合编号
	private int find(int p){
		if (p < 0 && p >= id.length){
			throw new IllegalArgumentException("p is out of bound.");
		}
		return id[p];
	}

	@Override
	public boolean isConnected(int p, int q){
		return find(p) == find(q);
	}

	//合并元素p和元素q所属的集合
	@Override
	public void unionElements(int p, int q){
		int pID = find(p);
		int qID = find(q);

		if (pID == qID)
			return;

		for (int i = 0; i < id.length; i ++){
			if (id[i] == pID)
				id[i] = qID;
		}
	}
}

//第二种,并很快Union-Find
public class UnionFind2 implements UF{
	private int[] parent;

	public UnionFind2 (int size){
		parent = new int[size];
		for (int i = 0; i < size; i ++){
			parent[i] = i;
		}
	}

	@Override
	public int getSize(){
		return parent.length;
	}

	//查找过程,查找元素p所对应的集合编号
	//O(h)复杂度,h为树的高度
	private int find(int p){
		if (p < 0 && p >= parent.length)
			throw new IllegalArgumentException("p is out of bound.");
		while (p != parent[p]){
			p = parent[p];
		}
		return p;
	}

	@Override
	public boolean isConnected(int p, int q){
		return find(p) == find(q);
	}

	@Override
	public void unionElements(int p, int q){
		int pRoot = find(p);
		int qRoot = find(q);
		if (pRoot == qRoot){
			return;
		}

		parent[pRoot] = parent[qRoot];
	}
}

//第三种 基于size的优化
public class UnionFind3 implements UF {
	private int[] parent;
	private int[] sz; //sz[i]表示以i为根的集合中元素个数

	public UnionFind3 (int size){
		parent = new int[size];
		for (int i = 0; i < size; i ++){
			parent[i] = i;
			sz[i] = 1;
		}
	}

	@Override
	public int getSize(){
		return parent.length;
	}

	//查找过程,查找元素p所对应的集合编号
	//O(h)复杂度,h为树的高度
	private int find(int p){
		if (p < 0 && p >= parent.length)
			throw new IllegalArgumentException("p is out of bound.");
		while (p != parent[p]){
			p = parent[p];
		}
		return p;
	}

	@Override
	public boolean isConnected(int p, int q){
		return find(p) == find(q);
	}

	@Override
	public void unionElements(int p, int q){
		int pRoot = find(p);
		int qRoot = find(q);
		
		if (pRoot == qRoot){
			return;
		}

		//根据两个元素所在的数的元素个数不同判断合并方向
		//将元素少的集合合并到元素多的集合上
		if (sz[pRoot] < sz[qRoot]){
			parent[pRoot] = parent[qRoot];
			sz[pRoot] += sz[qRoot];
		}else{
			parent[qRoot] = pRoot;
			sz[pRoot] += sz[qRoot];
		}
		
	}
}


//第四种 基于rank的优化
public class UnionFind4 implements UF {
	private int[] parent;
	private int[] rank; //rank[i]表示以i为根的集合中元素个数

	public UnionFind4 (int size){
		parent = new int[size];
		rank = new int[size];
		for (int i = 0; i < size; i ++){
			parent[i] = i;
			rank[i] = 1;
		}
	}

	@Override
	public int getSize(){
		return parent.length;
	}

	//查找过程,查找元素p所对应的集合编号
	//O(h)复杂度,h为树的高度
	private int find(int p){
		if (p < 0 && p >= parent.length)
			throw new IllegalArgumentException("p is out of bound.");
		while (p != parent[p]){
			p = parent[p];
		}
		return p;
	}

	@Override
	public boolean isConnected(int p, int q){
		return find(p) == find(q);
	}

	@Override
	public void unionElements(int p, int q){
		int pRoot = find(p);
		int qRoot = find(q);
		
		if (pRoot == qRoot){
			return;
		}

		//根据两个元素所在的数的rank不同判断合并方向
		//将rank低的集合合并到rank高的集合上
		if (rank[pRoot] < rank[qRoot]){
			parent[pRoot] = qRoot;
			rank[pRoot] += rank[qRoot];
		}else if (rank[qRoot] < rank[pRoot]){
			parent[qRoot] = pRoot;
		}else{
			parent[qRoot] = pRoot;
			rank[pRoot] += 1;
		}
	}
}


//UnionFind5  添加路径压缩
public class UnionFind5 implements UF {
	private int[] parent;
	private int[] rank; //rank[i]表示以i为根的集合中元素个数

	public UnionFind5 (int size){
		parent = new int[size];
		rank = new int[size];
		for (int i = 0; i < size; i ++){
			parent[i] = i;
			rank[i] = 1;
		}
	}

	@Override
	public int getSize(){
		return parent.length;
	}

	//查找过程,查找元素p所对应的集合编号
	//O(h)复杂度,h为树的高度
	private int find(int p){
		if (p < 0 && p >= parent.length)
			throw new IllegalArgumentException("p is out of bound.");
		while (p != parent[p]){
			parent[p] = parent[parent[p]];
			p = parent[p];
		}
		return p;
	}

	@Override
	public boolean isConnected(int p, int q){
		return find(p) == find(q);
	}

	@Override
	public void unionElements(int p, int q){
		int pRoot = find(p);
		int qRoot = find(q);
		
		if (pRoot == qRoot){
			return;
		}

		//根据两个元素所在的数的rank不同判断合并方向
		//将rank低的集合合并到rank高的集合上
		if (rank[pRoot] < rank[qRoot]){
			parent[pRoot] = qRoot;
			rank[pRoot] += rank[qRoot];
		}else if (rank[qRoot] < rank[pRoot]){
			parent[qRoot] = pRoot;
		}else{
			parent[qRoot] = pRoot;
			rank[pRoot] += 1;
		}
	}
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值