NKOJ 1548 路面修整
时间限制 : 10000 MS 空间限制 : 65536 KB
问题描述
FJ打算好好修一下农场中某条凹凸不平的土路。按奶牛们的要求,修好后的
路面高度应当单调上升或单调下降,也就是说,高度上升与高度下降的路段不能
同时出现在修好的路中。
整条路被分成了N段,N个整数A_1, … , A_N (1 <= N <= 2,000)依次描述
了每一段路的高度(0 <= A_i <= 1,000,000,000)。FJ希望找到一个恰好含N个
元素的不上升或不下降序列B_1, … , B_N,作为修过的路中每个路段的高度。
由于将每一段路垫高或挖低一个单位的花费相同,修路的总支出可以表示为:
|A_1 - B_1| + |A_2 - B_2| + … + |A_N - B_N|
请你计算一下,FJ在这项工程上的最小支出是多少。FJ向你保证,这个支出
不会超过231-1。
输入格式
第1行: 输入1个整数:N
第2..N+1行: 第i+1行为1个整数:A_i
输出格式
第1行: 输出1个正整数,表示FJ把路修成高度不上升或高度不下降的最小花费
样例输入
7
1
3
2
4
5
3
9
样例输出
3
提示
输出说明:
FJ将第一个高度为3的路段的高度减少为2,将第二个高度为3的路段的高度
增加到5,总花费为|2-3|+|5-3| = 3,并且各路段的高度为一个不下降序列
1,2,2,4,5,5,9。
来源 usaco feb2008 金组
思路:
1、显然要两次动规…下只讨论不下降的情况。
2、
阶段:从左往右依次讨论每一个数字
状态:f[i][j]表示将前位排好并以j作为结尾的最小代价
决策:选最小
方程:f[i][j]=min(f[i-1][k])+|a[i]-j|
边界条件:1<=i<=n,1<=j<=1,000,000,000,1<=k<=j;
3、观察到取得最小代价时新数列的数应该都是原来数列中出现过的。所以讨论j的次数可减少为n次。
为保证“不下降”,新建一数组保存a[]升序值。
状态改写为:f[i][j]表示将前位排好并以b[j]作为结尾的最小代价
方程改写为:f[i][j]=min(f[i][k])+|a[i]-b[j]|
边界条件:1<=i<=n,1<=j<=n,1<=k<=j;
4、k循环可用预处理砍掉。
代码:
#include<cstdio>
#include<iostream>
#include<algorithm>
#include<cmath>
#include<cstdlib>
using namespace std;
const int inf=1000000002;
int a[2003],b[2003];
int f[2][2003];
int n;
int dp_()
{
int temp,ans=inf;
for(int i=2;i<=n;i++)
{
temp=inf;
for(int j=1;j<=n;j++)
{
temp=min(temp,f[(i+1)&1][j]);
f[i&1][j]=temp+abs(a[i]-b[j]);
}
}
for(int i=1;i<=n;i++) if(f[n&1][i]<ans) ans=f[n&1][i];
return ans;
}
int main()
{
scanf("%d",&n);
for(int i=1;i<=n;i++)
{
scanf("%d",&a[i]);
b[i]=a[i];
}
sort(b+1,b+1+n);
for(int i=1;i<=n;i++) f[1][i]=abs(a[1]-b[i]);
int ans=dp_();
for(int i=1,m=n/2;i<=m;i++) swap(b[i],b[n-i+1]);
for(int i=1;i<=n;i++) f[1][i]=abs(a[1]-b[i]);
printf("%d",min(ans,dp_()));
}