【例题】【动规】NKOJ 1548 路面修整

NKOJ 1548 路面修整
时间限制 : 10000 MS 空间限制 : 65536 KB

问题描述
FJ打算好好修一下农场中某条凹凸不平的土路。按奶牛们的要求,修好后的
路面高度应当单调上升或单调下降,也就是说,高度上升与高度下降的路段不能
同时出现在修好的路中。

整条路被分成了N段,N个整数A_1, … , A_N (1 <= N <= 2,000)依次描述
了每一段路的高度(0 <= A_i <= 1,000,000,000)。FJ希望找到一个恰好含N个
元素的不上升或不下降序列B_1, … , B_N,作为修过的路中每个路段的高度。
由于将每一段路垫高或挖低一个单位的花费相同,修路的总支出可以表示为:
|A_1 - B_1| + |A_2 - B_2| + … + |A_N - B_N|

请你计算一下,FJ在这项工程上的最小支出是多少。FJ向你保证,这个支出
不会超过231-1。

输入格式
第1行: 输入1个整数:N
第2..N+1行: 第i+1行为1个整数:A_i

输出格式
第1行: 输出1个正整数,表示FJ把路修成高度不上升或高度不下降的最小花费

样例输入
7
1
3
2
4
5
3
9

样例输出
3

提示
输出说明:
FJ将第一个高度为3的路段的高度减少为2,将第二个高度为3的路段的高度
增加到5,总花费为|2-3|+|5-3| = 3,并且各路段的高度为一个不下降序列
1,2,2,4,5,5,9。

来源 usaco feb2008 金组

思路
1、显然要两次动规…下只讨论不下降的情况。
2、
阶段:从左往右依次讨论每一个数字
状态:f[i][j]表示将前位排好并以j作为结尾的最小代价
决策:选最小
方程:f[i][j]=min(f[i-1][k])+|a[i]-j|
边界条件:1<=i<=n,1<=j<=1,000,000,000,1<=k<=j;
3、观察到取得最小代价时新数列的数应该都是原来数列中出现过的。所以讨论j的次数可减少为n次。
为保证“不下降”,新建一数组保存a[]升序值。
状态改写为:f[i][j]表示将前位排好并以b[j]作为结尾的最小代价
方程改写为:f[i][j]=min(f[i][k])+|a[i]-b[j]|
边界条件:1<=i<=n,1<=j<=n,1<=k<=j;
4、k循环可用预处理砍掉。

代码:

#include<cstdio>   
#include<iostream>   
#include<algorithm>   
#include<cmath>   
#include<cstdlib>   
using namespace std;   
const int inf=1000000002;   

int a[2003],b[2003];   
int f[2][2003];   
int n;

int dp_()
{
    int temp,ans=inf;   
    for(int i=2;i<=n;i++)  
    { 
        temp=inf; 
        for(int j=1;j<=n;j++)   
        {   
           temp=min(temp,f[(i+1)&1][j]);   
           f[i&1][j]=temp+abs(a[i]-b[j]);   
        }   
    } 
    for(int i=1;i<=n;i++) if(f[n&1][i]<ans) ans=f[n&1][i];
    return ans;
}

int main()   
{   
    scanf("%d",&n);   
    for(int i=1;i<=n;i++)    
    {   
        scanf("%d",&a[i]);   
        b[i]=a[i];   
    }   
    sort(b+1,b+1+n);   
    for(int i=1;i<=n;i++) f[1][i]=abs(a[1]-b[i]);
    int ans=dp_();  
    for(int i=1,m=n/2;i<=m;i++) swap(b[i],b[n-i+1]);   
    for(int i=1;i<=n;i++) f[1][i]=abs(a[1]-b[i]);     
    printf("%d",min(ans,dp_()));   
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值