选择排序与时间复杂度
(一)选择排序的基本思想:选择排序就是每一次从待排序的数据中选出最小的元素,放到已经排好序的数据的最后位 置,直到全部元素排好序。
(二)解析过程:比如现在待排序的数据是int s[] = {3,1,5,4,6,8,7,9,0,2}
第一趟,首先s[0]的位置的元素挖空,赋给temp;接着找出最小的元素s[index],放进s[0]的位置。再把temp赋给s[index]。
第二趟:把s[1]的位置的元素挖空,赋给temp;接着在剩余元素(1,5,4,6,8,7,9,3,2)找出最小的元素s[index],放进s[1]的位置。再把temp赋给s[index]。
第三趟:把s[2]的位置的元素挖空,赋给temp;接着在剩余元素(5,4,6,8,7,9,3,2)找出最小的元素s[index],放进s[2]的位置。再把temp赋给s[index]。
第3趟:把s[3]的位置的元素挖空,赋给temp;接着在剩余元素(5,4,6,8,7,9,3)找出最小的元素s[index],放进s[2]的位置。再把temp赋给s[index]。
剩下的以此类推
(三)代码如下:
public class XuanZhe {
public static void main(String args[]) {
int a [] = {3,1,5,4,6,8,7,9,0,2};
xuanzhe(a);
for(int m = 0;m < a.length;m++){
System.out.print(a[m]);
}
}
public static void xuanzhe(int s[]){
int i;
int j;
int index;//用来存放找到的最小值的下标
int temp;//中间变量
for(i = 0;i < s.length-1; i++){
index = i;//先让index和i相等,之后再通过比较找到最小的值,之后再把下标赋值给index
/*通过这个循环找出后面所有数的最小值的下标 ,j=i+1,是第一个位于i后面的数,之后再j++,变为i后面的第二个数,第3个数.....*/
for(j = i + 1;j < s.length; j++){
if(s[index] > s[j]){
index = j;//小的数在s[j],所以把j赋给index,index就是小数值的下标,然后通过循环,就可以找到最小值的下标
}
}
temp = s[i];
s[i] = s[index];
s[index] = temp;
}
}
}
(四)时间复杂度分析:
简单选择排序的比较次数与序列的初始排序无关。 假设待排序的序列有 N 个元素,则比较次数总是N (N - 1) / 2。
而移动次数与序列的初始排序有关。当序列正序时,移动次数最少,为 0.
当序列反序时,移动次数最多,为3N (N - 1) / 2。
所以,综合以上,简单排序的时间复杂度为 O(N2)