8大排序之-----(3)选择排序与时间复杂度

                                                     选择排序与时间复杂度

(一)选择排序的基本思想:选择排序就是每一次从待排序的数据中选出最小的元素,放到已经排好序的数据的最后位                                                置,直到全部元素排好序。


(二)解析过程:比如现在待排序的数据是int s[] = {3,1,5,4,6,8,7,9,0,2}

           第一趟,首先s[0]的位置的元素挖空,赋给temp;接着找出最小的元素s[index],放进s[0]的位置。再把temp赋给s[index]。


第二趟:把s[1]的位置的元素挖空,赋给temp;接着在剩余元素(1,5,4,6,8,7,9,3,2)找出最小的元素s[index],放进s[1]的位置。再把temp赋给s[index]。


第三趟:s[2]的位置的元素挖空,赋给temp;接着在剩余元素(5,4,6,8,7,9,3,2)找出最小的元素s[index],放进s[2]的位置。再把temp赋给s[index]。



第3趟:s[3]的位置的元素挖空,赋给temp;接着在剩余元素(5,4,6,8,7,9,3)找出最小的元素s[index],放进s[2]的位置。再把temp赋给s[index]。


剩下的以此类推

(三)代码如下:

public class XuanZhe {
	
	public static void main(String args[]) {
		int a [] = {3,1,5,4,6,8,7,9,0,2};
		xuanzhe(a);
		 for(int m = 0;m < a.length;m++){
	    	   System.out.print(a[m]);
	       }
	}
   
	public static void xuanzhe(int s[]){
		int i;
		int j;
		int index;//用来存放找到的最小值的下标
		int temp;//中间变量
		for(i = 0;i < s.length-1; i++){
			index = i;//先让index和i相等,之后再通过比较找到最小的值,之后再把下标赋值给index
			/*通过这个循环找出后面所有数的最小值的下标 ,j=i+1,是第一个位于i后面的数,之后再j++,变为i后面的第二个数,第3个数.....*/
			for(j = i + 1;j < s.length; j++){
				if(s[index] > s[j]){
					index = j;//小的数在s[j],所以把j赋给index,index就是小数值的下标,然后通过循环,就可以找到最小值的下标
					
				}
			}
			temp = s[i];
			s[i] = s[index];
			s[index] = temp;
			
		}
		
	}
}
(四)时间复杂度分析:

简单选择排序的比较次数与序列的初始排序无关。 假设待排序的序列有 N 个元素,则比较次数总是N (N - 1) / 2。
       而移动次数与序列的初始排序有关。当序列正序时,移动次数最少,为 0.
       当序列反序时,移动次数最多,为3N (N - 1) /  2。


所以,综合以上,简单排序的时间复杂度为 O(N2)

          

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值