常见机器学习方法

机器学习常见问题分为  分类、聚类、回归、标注

分类算法有:id3决策树、朴素贝叶斯、knn、svm、bp神经网络、logistic regression

聚类算法有:k-means、高斯混合模型、层次聚类、基于密度的聚类

回归算法有:单变量线性回归、多变量线性回归、局部加权回归

标注算法有:隐马尔科夫、条件随机场

深度学习方法:cnn、rnn、稀疏自编码


凸优化算法:梯度下降、牛顿法、拟牛顿法

参数优化算法:随机搜索算法(蚁群、遗传)


机器学习常见面试算法


机器学习思维导图

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值