各种分布的python例子

#-*- encoding:utf-8 -*-
import numpy as np
from scipy import stats
import matplotlib.pyplot as plt
#####################
#二项分布
#####################
def test_binom_pmf():
    '''
    为离散分布
    二项分布的例子:抛掷10次硬币,恰好两次正面朝上的概率是多少?
    '''
    n = 10#独立实验次数
    p = 0.5#每次正面朝上概率
    k = np.arange(0,11)#0-10次正面朝上概率
    binomial = stats.binom.pmf(k,n,p)
    print binomial#概率和为1
    print sum(binomial)
    print binomial[2]

    plt.plot(k, binomial,'o-')
    plt.title('Binomial: n=%i , p=%.2f' % (n,p),fontsize=15)
    plt.xlabel('Number of successes')
    plt.ylabel('Probability of success',fontsize=15)
    plt.show()

def test_binom_rvs():
    '''
    为离散分布
    使用.rvs函数模拟一个二项随机变量,其中参数size指定你要进行模拟的次数。我让Python返回10000个参数为n和p的二项式随机变量
    进行10000次实验,每次抛10次硬币,统计有几次正面朝上,最后统计每次实验正面朝上的次数
    '''
    binom_sim = data = stats.binom.rvs(n=10,p=0.3,size=10000)
    print len(binom_sim)
    print "mean: %g" % np.mean(binom_sim)
    print "SD: %g" % np.std(binom_sim,ddof=1)

    plt.hist(binom_sim,bins=10,normed=True)
    plt.xlabel('x')
    plt.ylabel('density')
    plt.show()
#####################
#泊松分布
#####################
def test_poisson_pmf():
    '''
    泊松分布的例子:已知某路口发生事故的比率是每天2次,那么在此处一天内发生4次事故的概率是多少?
    泊松分布的输出是一个数列,包含了发生0次、1次、2次,直到10次事故的概率。
    '''
    rate = 2
    n = np.arange(0,10)
    y = stats.poisson.pmf(n,rate)
    print y
    plt.plot(n, y, 'o-')
    plt.title('Poisson: rate=%i' % (rate), fontsize=15)
    plt.xlabel('Number of accidents')
    plt.ylabel('Probability of number accidents', fontsize=15)
    plt.show()

def test_poisson_rvs():
    '''
    模拟1000个服从泊松分布的随机变量
    '''
    data = stats.poisson.rvs(mu=2, loc=0, size=1000)
    print "mean: %g" % np.mean(data)
    print "SD: %g" % np.std(data, ddof=1)

    rate = 2
    n = np.arange(0,10)
    y = stats.poisson.rvs(n,rate)
    print y
    plt.plot(n, y, 'o-')
    plt.title('Poisson: rate=%i' % (rate), fontsize=15)
    plt.xlabel('Number of accidents')
    plt.ylabel('Probability of number accidents', fontsize=15)
    plt.show()
#####################
#正态分布
#####################
def test_norm_pmf():
    '''
    正态分布是一种连续分布,其函数可以在实线上的任何地方取值。
    正态分布由两个参数描述:分布的平均值μ和方差σ2 。
    '''
    mu = 0#mean
    sigma = 1#standard deviation
    x = np.arange(-5,5,0.1)
    y = stats.norm.pdf(x,0,1)
    print y
    plt.plot(x, y)
    plt.title('Normal: $\mu$=%.1f, $\sigma^2$=%.1f' % (mu,sigma))
    plt.xlabel('x')
    plt.ylabel('Probability density', fontsize=15)
    plt.show()

#####################
#beta分布
#####################
def test_beta_pmf():
    '''
    β分布是一个取值在 [0, 1] 之间的连续分布,它由两个形态参数α和β的取值所刻画。
    β分布的形状取决于α和β的值。贝叶斯分析中大量使用了β分布。
    '''
    a = 0.5#
    b = 0.5
    x = np.arange(0.01,1,0.01)
    y = stats.norm.pdf(x,a,b)
    print y
    plt.plot(x, y)
    plt.title('Beta: a=%.1f, b=%.1f' % (a,b))
    plt.xlabel('x')
    plt.ylabel('Probability density', fontsize=15)
    plt.show()

#####################
#指数分布(Exponential Distribution)
#####################
def test_exp():
    '''
    指数分布是一种连续概率分布,用于表示独立随机事件发生的时间间隔。
    比如旅客进入机场的时间间隔、打进客服中心电话的时间间隔、中文维基百科新条目出现的时间间隔等等。
    '''
    lambd = 0.5#
    x = np.arange(0,15,0.1)
    y =lambd * np.exp(-lambd *x)
    print y
    plt.plot(x, y)
    plt.title('Exponential: $\lambda$=%.2f' % (lambd))
    plt.xlabel('x')
    plt.ylabel('Probability density', fontsize=15)
    plt.show()

def test_expon_rvs():
    '''
    指数分布下模拟1000个随机变量。scale参数表示λ的倒数。函数np.std中,参数ddof等于标准偏差除以 $n-1$ 的值。
    '''
    data = stats.expon.rvs(scale=2, size=1000)
    print "mean: %g" % np.mean(data)
    print "SD: %g" % np.std(data, ddof=1)

    plt.hist(data, bins=20, normed=True)
    plt.xlim(0,15)
    plt.title('Simulating Exponential Random Variables')
    plt.show()

test_expon_rvs()

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值