常用的向量范数与矩阵范数(附例题)


一、向量范数

定义:(向量范数)对 ∀ x ∈ R n ( 或 C n ) \forall x\in \rm R^n(或\rm C^n) xRn(Cn),存在唯一的实数 ∣ ∣ x ∣ ∣ \vert\vert x\vert\vert ∣∣x∣∣与之对应,满足条件:

  1. ∣ ∣ x ∣ ∣ ≥ 0 \vert\vert x\vert\vert\ge0 ∣∣x∣∣0,当且仅当 x = 0 x=0 x=0时, ∣ ∣ x ∣ ∣ = 0 \vert\vert x\vert\vert=0 ∣∣x∣∣=0;(正定性)
  2. ∀ λ ∈ R n ( 或 C n ) \forall \lambda \in \rm R^n(或\rm C^n) λRn(Cn),有 ∣ ∣ λ x ∣ ∣ = ∣ λ ∣ ∣ ∣ x ∣ ∣ \vert\vert\lambda x\vert\vert=\vert\lambda\vert\vert\vert x\vert\vert ∣∣λx∣∣=λ∣∣∣x∣∣;(齐次性)
  3. ∀ x , y ∈ R n ( 或 C n ) \forall x,y \in \rm R^n(或\rm C^n) x,yRn(Cn),有 ∣ ∣ λ x + y ∣ ∣ ≤ ∣ ∣ x ∣ ∣ + ∣ ∣ y ∣ ∣ \vert\vert\lambda x+y\vert\vert\le\vert\vert x \vert\vert+\vert\vert y\vert\vert ∣∣λx+y∣∣∣∣x∣∣+∣∣y∣∣.(三角不等式)

则称 ∣ ∣ x ∣ ∣ \vert\vert x\vert\vert ∣∣x∣∣ R n ( 或 C n ) \rm R^n(或\rm C^n) Rn(Cn)上的向量范数.

常用的向量范数

∀ x = ( x 1 , ⋯   , x n ) T ∈ R n \forall x=(x_1,\cdots,x_n)^{\rm T}\in\rm R^n x=(x1,,xn)TRn R n \rm R^n Rn中三种常用的范数为

  1. ∣ ∣ x ∣ ∣ ∞ = m a x 1 ⩽ i ⩽ n ∣ x i ∣ \vert\vert x\vert\vert_\infty=\mathop{max}\limits_{1 \leqslant i \leqslant n} |x_i| ∣∣x=1inmaxxi,称为 ∞ \infty 范数或最大范数;
  2. ∣ ∣ x ∣ ∣ 1 = ∑ i = 1 n ∣ x i ∣ \vert\vert x\vert\vert_1=\sum_{i=1}^n\vert x_i\vert ∣∣x1=i=1nxi,称为1-范数;
  3. ∣ ∣ x ∣ ∣ 2 = ( ∑ i = 1 n x i 2 ) 1 2 \vert\vert x\vert\vert_2=(\sum_{i=1}^nx_i^2)^\frac{1}{2} ∣∣x2=i=1nxi2)21,称为2-范数或欧式范数.

一般的, ∣ ∣ x ∣ ∣ p = ( ∑ i = 1 n ∣ x i ∣ p ) 1 p ( 0 ≤ p ≤ ∞ ) \vert\vert x\vert\vert_p=(\sum_{i=1}^n\vert x_i\vert^p)^\frac{1}{p}(0\le p\le\infty) ∣∣xp=i=1nxip)p1(0p)称为向量的p范数.

二、矩阵范数

定义:(矩阵范数)对 ∀ A ∈ R n × n \forall A\in \rm R^{n×n} ARn×n,存在唯一的实数 ∣ ∣ A ∣ ∣ \vert\vert A\vert\vert ∣∣A∣∣与之对应,满足条件:

  1. ∣ ∣ A ∣ ∣ ≥ 0 \vert\vert A\vert\vert\ge0 ∣∣A∣∣0,当且仅当 A = 0 A=0 A=0时, ∣ ∣ A ∣ ∣ = 0 \vert\vert A\vert\vert=0 ∣∣A∣∣=0;(正定性)
  2. ∀ λ ∈ R n ( 或 C n ) \forall \lambda \in \rm R^n(或\rm C^n) λRn(Cn),有 ∣ ∣ λ A ∣ ∣ = ∣ λ ∣ ∣ ∣ A ∣ ∣ \vert\vert\lambda A\vert\vert=\vert\lambda\vert\vert\vert A\vert\vert ∣∣λA∣∣=λ∣∣∣A∣∣;(齐次性)
  3. ∀ A , B ∈ R n × n \forall A,B \in \rm R^{n×n} A,BRn×n,有 ∣ ∣ A + B ∣ ∣ ≤ ∣ ∣ A ∣ ∣ + ∣ ∣ B ∣ ∣ \vert\vert A+B\vert\vert\le\vert\vert A \vert\vert+\vert\vert B\vert\vert ∣∣A+B∣∣∣∣A∣∣+∣∣B∣∣;(三角不等式)
  4. ∀ A , B ∈ R n × n \forall A,B\in R^{n×n} A,BRn×n,有 ∣ ∣ A B ∣ ∣ ≤ ∣ ∣ A ∣ ∣ ∣ ∣ B ∣ ∣ \vert\vert AB\vert\vert\le\vert\vert A\vert\vert\vert\vert B\vert\vert ∣∣AB∣∣∣∣A∣∣∣∣B∣∣.(相容性)

则称 ∣ ∣ A ∣ ∣ 是 R n × n \vert\vert A\vert\vert是\rm R^{n×n} ∣∣A∣∣Rn×n上的矩阵范数.

常用的矩阵范数

A = ( a i j ) ∈ C n × n A=(a_{ij})\in C^{n×n} A=(aij)Cn×n,则下面三种规定的实值函数

  1. ∣ ∣ A ∣ ∣ m 1 = ∑ i = 1 n ∑ j = 1 n ∣ a i j ∣ \vert\vert A\vert\vert_{m1}=\sum_{i=1}^n\sum_{j=1}^n\vert a_{ij}\vert ∣∣Am1=i=1nj=1naij
  2. ∣ ∣ A ∣ ∣ m ∞ = n ⋅ m a x i , j ∣ a i , j ∣ \vert\vert A\vert\vert_{m\infty}=n·\mathop{max}\limits_{i,j}\vert a_{i,j}\vert ∣∣Am=ni,jmaxai,j
  3. ∣ ∣ A ∣ ∣ m 2 = ( ∑ i = 1 n ∑ j = 1 n ∣ a i j ∣ 2 ) 1 2 \vert\vert A\vert\vert_{m2}=(\sum_{i=1}^n\sum_{j=1}^n\vert a_{ij}\vert^2)^\frac{1}{2} ∣∣Am2=(i=1nj=1naij2)21.(也称F范数

都是矩阵A的范数.

矩阵常用算子范数

A = ( a i j ) ∈ C n × n A=(a_{ij})\in C^{n×n} A=(aij)Cn×n, x = ( x 1 , x 2 , ⋯   , x n ) T ∈ C n x=(x_1,x_2,\cdots,x_n)^{\rm T}\in C^n x=(x1,x2,,xn)TCn,则从属于向量 x x x的3种范数 ∣ ∣ x ∣ ∣ 1 \vert\vert x\vert\vert_1 ∣∣x1 ∣ ∣ x ∣ ∣ 2 \vert\vert x\vert\vert_2 ∣∣x2 ∣ ∣ x ∣ ∣ ∞ \vert\vert x\vert\vert_\infty ∣∣x的算子范数依次是

1. ∣ ∣ A ∣ ∣ 1 \vert\vert A\vert\vert_1 ∣∣A1= m a x j ∑ i = 1 m ∣ a i j ∣ \mathop{max}\limits_{j}\sum_{i=1}^m\vert a_{ij}\vert jmaxi=1maij,称为列范数;
2. ∣ ∣ A ∣ ∣ 2 \vert\vert A\vert\vert_2 ∣∣A2= λ m a x ( A H A ) \sqrt{\lambda_{max}(A^{\rm H}A)} λmax(AHA) ,称为谱范数,其中 λ m a x ( A H A ) \lambda_{max}(A^{\rm H}A) λmax(AHA)是矩阵 ( A H A ) (A^{\rm H}A) (AHA)特征值绝对值的最大值;
3. ∣ ∣ A ∣ ∣ ∞ \vert\vert A\vert\vert_{\infty} ∣∣A= m a x i ∑ j = 1 n ∣ a i j ∣ \mathop{max}\limits_{i}\sum_{j=1}^n\vert a_{ij}\vert imaxj=1naij,称为行范数.

在这里插入图片描述

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Yangtze20

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值