向量范数证明例题_例题整理02-2019年秋学期清华工科线性代数期末A卷试题杂谈...

这篇博客回顾了一次工科线性代数考试,强调了考试中计算题的重要性,如矩阵可对角化、正定性判断、行列式变形等。博主分享了一个将证明题转化为计算题的例子,涉及四位数的行列式变形,并探讨了算子范数的证明策略,利用柯西不等式和夹逼法。虽然计算量大,但对平时认真做作业的学生来说并非特别困难。
摘要由CSDN通过智能技术生成

本来应该在1月4号考完之后就可以写这篇杂谈的,但是由于程设太杀人了,所以一直等到7号考完程设并且今天考完离散之后才开始回想这次考试。

工科类的线性代数偏重于计算,比如说试卷开头就是给你四个矩阵,让你判断是否可以对角化,然后就是给你四个矩阵让你判定是不是正定的。这种题目没有任何技巧,就是计算。然后又是给你一个矩阵让你给出行空间、列空间以及左右零空间的一组基,基本没有思维难度,就是计算题。

然后就到了这次考试的一个滑稽题。这题本来是一个证明题,但是你清工科生就是会计算啊,于是这个证明题就变成了计算题。

P1.已知四位数

均为
的倍数,求证下列行列式的值为
的倍数:

PS:由于记忆模糊(这种数据谁记得住啊!),原来考试的数据已经忘掉了,所以这里是一个自编的数据,但是不影响题目意思。

这题就是考察行列式的变形,比较容易发现只需要把第一列乘上

加到第四列,第二列乘上
加到第四列,第二列乘上
加到第四列,第四列就可以提出一个
,从而这个行列式就是
倍数。

然而这种题目为什么会阻拦你清工科生呢?这种每个元素都是一位数,阶数只有

的行列式,直接展开不就行了?于是考完之后几乎所有同学都这么说:“行列式直接展开就好了啊,都说了,暴力解决一切问题!”

我也不知道说什么好emmmm。

其余题目也基本就是计算题,包括但不限于奇异值分解、最小二乘解、QR分解、对角化等等,反正一个大题设计一个考点,然后就是计算。

但是试卷不能一直算到最后啊,于是就是这张卷子唯二的证明题之一:

P2.我们定义矩阵的算子范数为:

请证明:

这题看上去有点吓人,但是实际上也是一个套路题。证明等式没想法,那就分别证明大于等于和小于等于,直接夹逼出来等式。

首先我们要把算子范数的定义稍微转化一下,让它和我们要证明的式子接近一些。我们实际上可以得知:

这个等式实际上可以让定义简化成为:

从而我们就有点思路了。

由于柯西不等式,我们得知在

的时候,有:

那么显然就有:

那么我们就得知:

这就是不等式的一边。我们考虑另一边,实际上就是要找到一对

。实际上我们只需要考虑算子范数的定义,就知道必然存在一个模长为
的向量
满足
,那么我们就得到,如果定义
,就有:

这样的话我们就已经得到一个例子,结合上述所有论证,原命题就得证。

这次的线性代数试题,讲实话实在是太偏重计算了,但是所给的数据不算特别容易计算的(原谅我是真的记不住数据,这里就没有展示计算题);再加上最后还有一个证明题。所以说这次考试并不算特别简单。然而正是因为偏重计算,那些平时作业好好做的应该能够有一个不错的分数,这么看,这卷子也不是特别难。

这篇文章比较简短,因为这次线代没什么好吐槽的,另外就是几天考的离散数学是需要说点东西的。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值