FixMatch:使用一致性和置信度简化半监督学习

FixMatch: 半监督学习的强大工具

这篇论文介绍了 FixMatch,一种用于半监督学习的强大方法。半监督学习是指利用少量带标签的数据和大量无标签数据进行训练。论文以医学图像为例,说明了收集带标签的医学图像数据非常困难,因为需要专业的医师进行诊断和标注。而互联网上存在大量的无标签图像数据,如何利用这些数据来提升模型的学习效果成为了半监督学习的关键问题。

FixMatch 结合了两种半监督学习方法:一致性置信度

一致性 指的是,对同一个样本进行不同的数据增强操作,然后用模型预测其标签,并希望模型对同一个样本的预测结果保持一致。

置信度 指的是,模型对预测结果的置信度越高,就越有可能将其作为“伪标签”来训练模型。

FixMatch 的损失函数由两部分组成:

  1. 监督损失: 使用带标签数据训练模型,计算预测标签和真实标签之间的交叉熵。
  2. 无监督损失: 使用无标签数据训练模型,计算模型对同一个样本进行不同数据增强操作后预测结果之间的交叉熵。

具体来说,FixMatch 首先对无标签样本进行弱数据增强,然后使用模型预测其标签。接着,对同一个样本进行强数据增强,并再次用模型预测其标签。只有当模型对弱数据增强后的样本预测结果的置信度足够高时,才会使用该结果作为“伪标签”来计算无监督损失。

FixMatch 的这种方法能够有效地利用无标签数据,提升模型的性能。论文中也详细介绍了数据增强方法、置信度阈值等参数的设置,为实际应用提供了参考。

FixMatch 是一种简单但出奇地有效的方法,用于半监督学习。它巧妙地结合了两种先前的方法,并在标注样本很少和极少的情况下取得了最先进的性能。论文:https://arxiv.org/abs/2001.07685代码:https://github.com/google-research/fixmatch
摘要:半监督学习 (SSL) 提供了一种有效的方法,利用未标注数据来提高模型的性能。在本文中,我们展示了两种常见的 SSL 方法的简单组合的强大功能:一致性正则化和伪标签。我们的算法 FixMatch 首先使用模型对弱增强未标注图像的预测来生成伪标签。对于给定的图像,只有当模型产生高置信度预测时,才会保留伪标签。然后训练模型在接收相同图像的强增强版本时预测伪标签。尽管其简单性,我们表明 FixMatch 在各种标准半监督学习基准测试中取得了最先进的性能,包括 CIFAR-10 上使用 250 个标签的 94.93% 的准确率,以及使用 40 个标签的 88.61% 的准确率——每个类别只有 4 个标签。由于 FixMatch 与现有的 SSL 方法有很多相似之处,但性能更差,我们进行了广泛的消融研究,以区分对 FixMatch 成功最重要的实验因素。我们在该 https URL 上提供了我们的代码。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

YannicKilcher

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值