scipy.stats.gaussian_kde 一个用于高斯核密度估计的python类,使用的前提是import scipy
高斯核密度估计
使用非参数估计的方式估计一个随机变量的概率密度函数,在深度学习中,我们获得的数据集基本是以离散形式出现的,如果想用这些离散值获得其概率密度函数,就可以使用高斯核密度估计来达到
参数
dataset:array_like,需要评估的数据点,对于单变量数据是一个一维数组,否则就是一个带维度的二维数组
bw_method
weights
(后两个参数暂时还没用到,先不整理了)
方法
pdf(x):在给定的点集x上评价估计的概率密度函数(我的理解是,这边给定一个x,就会得到这个x在原gaussian_kde对象对应的概率密度值)最常用
integrate_gaussian(mean, cov):将估计的密度乘以一个多元Gaussian函数,并对整个空间积分(mean是一个1-D数据,指定Gaussian函数的均值,cov是一个2-D数组,指定Gaussian的协方差矩阵)