【知识建设】面向应用的高斯核密度估计——scipy.stats.gaussian_kde

scipy.stats.gaussian_kde 一个用于高斯核密度估计的python类,使用的前提是import scipy

高斯核密度估计

使用非参数估计的方式估计一个随机变量的概率密度函数,在深度学习中,我们获得的数据集基本是以离散形式出现的,如果想用这些离散值获得其概率密度函数,就可以使用高斯核密度估计来达到

参数

dataset:array_like,需要评估的数据点,对于单变量数据是一个一维数组,否则就是一个带维度的二维数组

bw_method

weights

(后两个参数暂时还没用到,先不整理了)

方法

pdf(x):在给定的点集x上评价估计的概率密度函数(我的理解是,这边给定一个x,就会得到这个x在原gaussian_kde对象对应的概率密度值)最常用

integrate_gaussian(mean, cov):将估计的密度乘以一个多元Gaussian函数,并对整个空间积分(mean是一个1-D数据,指定Gaussian函数的均值,cov是一个2-D数组,指定Gaussian的协方差矩阵)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值