题目大意:
在一个棋盘上,放置N个国际象棋的城堡,每个城堡给出可以放置的范围,要求这些城堡不能相互攻击到,求这些城堡的摆放方案。
解题思路:
这题非常关键的一点就是横纵坐标可以分开独立考虑。对于每一个方向,我们维护一个下限小(其次上线小)的区间优先出堆的堆,以及当前要填充的坐标。每次去堆顶区间。如果上限小于要填充坐标说明无法填充。如果下限小于当前要填充坐标,更新下限,否则取下限和要填充坐标进行填充,并且更新要填充坐标。就这样从小到大不断填充,直至所有区间填充完毕。
AC代码:
#include <iostream>
#include <algorithm>
#include <cstdio>
#include <cstring>
#include <queue>
using namespace std;
const int maxn=5000+3;
struct Node
{
int l,r,id;//下限、上限、编号
bool operator<(const Node &other)const//下限小的优先出堆,其次考虑上限小的
{
if(l!=other.l)
return l>other.l;
else return r>other.r;
}
}node[2][maxn];
int N,ans[2][maxn];
bool solve(int x)
{
priority_queue<Node> que;
for(int i=0;i<N;++i)
que.push(node[x][i]);
int now=0;
while(!que.empty())
{
Node tmp=que.top(); que.pop();
if(tmp.r<now)//区域内所有坐标都已使用,无法放置
return false;
if(tmp.l<now)//更新下限
{
tmp.l=now;
que.push(tmp);
}
else//放置棋子
{
int put=max(now,tmp.l);
ans[x][tmp.id]=put;
now=put+1;
}
}
return true;
}
int main()
{
while(~scanf("%d",&N)&&N)
{
for(int i=0;i<N;++i)
{
scanf("%d%d%d%d",&node[0][i].l,&node[1][i].l,&node[0][i].r,&node[1][i].r);
node[0][i].id=i;
node[1][i].id=i;
}
if(solve(0)&&solve(1))//横纵坐标都有解
for(int i=0;i<N;++i)
printf("%d %d\n",ans[0][i],ans[1][i]);
else puts("IMPOSSIBLE");
}
return 0;
}