UVa 11134 Fabled Rooks(贪心+优先队列)

题目链接


题目大意:

    在一个棋盘上,放置N个国际象棋的城堡,每个城堡给出可以放置的范围,要求这些城堡不能相互攻击到,求这些城堡的摆放方案。


解题思路:

    这题非常关键的一点就是横纵坐标可以分开独立考虑。对于每一个方向,我们维护一个下限小(其次上线小)的区间优先出堆的堆,以及当前要填充的坐标。每次去堆顶区间。如果上限小于要填充坐标说明无法填充。如果下限小于当前要填充坐标,更新下限,否则取下限和要填充坐标进行填充,并且更新要填充坐标。就这样从小到大不断填充,直至所有区间填充完毕。


AC代码:

#include <iostream>
#include <algorithm>
#include <cstdio>
#include <cstring>
#include <queue>
using namespace std;

const int maxn=5000+3;

struct Node
{
    int l,r,id;//下限、上限、编号
    bool operator<(const Node &other)const//下限小的优先出堆,其次考虑上限小的
    {
        if(l!=other.l)
            return l>other.l;
        else return r>other.r;
    }
}node[2][maxn];

int N,ans[2][maxn];

bool solve(int x)
{
    priority_queue<Node> que;
    for(int i=0;i<N;++i)
        que.push(node[x][i]);
    int now=0;
    while(!que.empty())
    {
        Node tmp=que.top(); que.pop();
        if(tmp.r<now)//区域内所有坐标都已使用,无法放置
            return false;
        if(tmp.l<now)//更新下限
        {
            tmp.l=now;
            que.push(tmp);
        }
        else//放置棋子
        {
            int put=max(now,tmp.l);
            ans[x][tmp.id]=put;
            now=put+1;
        }
    }
    return true;
}

int main()
{
    while(~scanf("%d",&N)&&N)
    {
        for(int i=0;i<N;++i)
        {
            scanf("%d%d%d%d",&node[0][i].l,&node[1][i].l,&node[0][i].r,&node[1][i].r);
            node[0][i].id=i;
            node[1][i].id=i;
        }
        if(solve(0)&&solve(1))//横纵坐标都有解
            for(int i=0;i<N;++i)
                printf("%d %d\n",ans[0][i],ans[1][i]);
        else puts("IMPOSSIBLE");
    }
    
    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值