YOLO系列:如何将XML格式的标签文件转为TXT格式(YOLO格式)

本文详细介绍了如何将VOC格式的目标检测标签转换为YOLO所需的txt格式,包括使用convert函数处理绝对坐标转为相对坐标,并提供了一个Python脚本示例,用于从XML文件中提取边界框信息并保存为txt文件。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

写在前面:

在目标检测领域,好多人习惯在刚开始打标的时候先导出为voc格式,voc格式的标签文件方便后期检查标签,但是YOLO系列并不能直接使用该格式的标签文件,故我们需要转换成YOLO格式的标签文件,也就是txt格式

一、使用convert函数将绝对坐标转换为相对坐标

def convert(size, box):

首先定义函数convert(size,box),该函数接受两个参数:size表示原始图像的尺寸,是一个包含宽度和高度的二元组;box表示边界框的坐标信息,它是一个四元组,包含了边界框的左上角和右下角的坐标。

x_center = (box[0] + box[1]) / 2.0
y_center = (box[2] + box[3]) / 2.0

x_center和y_center表示需要先计算出目标框的中心点位置坐标,通过将左上角和右下角两个点横纵坐标相加除以2得到。

x = x_center / size[0]
y = y_center / size[1]

这两行计算了中心点的相对坐标,将中心点的坐标除以原始图像的宽度和高度,得到相对于原始图像尺寸的比例。

return (x, y, w, h)

最后,函数返回一个四元组,包含了边界框的中心点相对坐标以及宽度和高度相对尺寸。

二、将xml文件转换成txt文件

def convert_annotation(xml_files_path, save_txt_files_path, classes)

定义函数convert_annotation(xml_files_path, save_txt_files_path, classes),该函数接受三个参数,分别为xml文件的路径(xml_files_path),转换成txt文件之后的保存路径(save_txt_files_path)以及你的标签名称(classes)。

1、遍历文件夹内所有的xml文件,并构建txt格式的完整输出路径

for xml_name in xml_files #遍历文件夹内所有的xml文件名
out_txt_path = os.path.join(save_txt_files_path, xml_name.split('.')[0] + '.txt')

txt文件的命名与xml文件相同,只不过是将xml后缀改成了txt后缀

2、解析xml文件,根据坐标和标签名称构建对应的txt格式文件

tree = ET.parse(xml_file) #使用xml树,遍历当前的xml文件
root = tree.getroot() #获取到当前xml树的根节点
size = root.find('size') #在当前的xml文件内找到子元素size

以上三行代码完成了遍历当前xml文件的操作,并找到当前xml文件对应图片的大小

w = int(size.find('width').text)
h = int(size.find('height').text)

以上两行代码表示在当前的xml文件内找到目标框的宽度和高度

3、根据xml文件内的标签名称,在对应的类别列表classes内找到对应的类别ID

for obj in root.iter('object')
    cls = obj.find('name').text
    if cls not in classes or int(difficult) == 1:
       continue
cls_id = classes.index(cls)

4、获取边界框的坐标信息

xmlbox = obj.find('bndbox')
b = (float(xmlbox.find('xmin').text), float(xmlbox.find('xmax').text),float(xmlbox.find('ymin').text),float(xmlbox.find('ymax').text))

以上两行代码完成了边界框的划定,包含四个边界点。并用一个四元组进行保存

5、调用convert函数,将绝对坐标转换成相对坐标,并将对应的类别ID写入txt文件

bb = convert((w, h), b)
out_txt_f.write(str(cls_id) + " " + " ".join([str(a) for a in bb]) + '\n')

三、完整代码

import xml.etree.ElementTree as ET
import os


def convert(size, box):
    x_center = (box[0] + box[1]) / 2.0
    y_center = (box[2] + box[3]) / 2.0
    #分别计算纵坐标和横坐标的中心点
    x = x_center / size[0]
    y = y_center / size[1]

    w = (box[1] - box[0]) / size[0]
    h = (box[3] - box[2]) / size[1]

    # print(x, y, w, h)
    return (x, y, w, h)


def convert_annotation(xml_files_path, save_txt_files_path, classes):
    xml_files = os.listdir(xml_files_path)
    print(xml_files)
    for xml_name in xml_files:
        print(xml_name)
        xml_file = os.path.join(xml_files_path, xml_name)
        out_txt_path = os.path.join(save_txt_files_path, xml_name.split('.')[0] + '.txt')
        out_txt_f = open(out_txt_path, 'w')
        tree = ET.parse(xml_file)
        root = tree.getroot()
        size = root.find('size')
        w = int(size.find('width').text)
        h = int(size.find('height').text)

        for obj in root.iter('object'):
            difficult = obj.find('difficult').text
            cls = obj.find('name').text
            if cls not in classes or int(difficult) == 1:
                continue
            cls_id = classes.index(cls)
            xmlbox = obj.find('bndbox')
            b = (float(xmlbox.find('xmin').text), float(xmlbox.find('xmax').text), float(xmlbox.find('ymin').text),
                 float(xmlbox.find('ymax').text))
            # b=(xmin, xmax, ymin, ymax)
            print(w, h, b)
            bb = convert((w, h), b)
            out_txt_f.write(str(cls_id) + " " + " ".join([str(a) for a in bb]) + '\n')


if __name__ == "__main__":
    # 1、指定yolo类别
    classes1 = ["class1","class2","class3"]
    # 2、voc格式的xml标签文件路径
    xml_files1 = r'/path/to/your/xml/folder'
    # 3、转化为yolo格式的txt标签文件存储路径
    save_txt_files1 = r'/path/to/your/txt/save/folder'

    convert_annotation(xml_files1, save_txt_files1, classes1)
    with open(save_txt_files1 + '/classes.txt', 'w') as file:
        for class_name in classes1:
            file.write(class_name + '\n')

### YOLO中的XML文件处理 对于YOLO框架而言,通常使用的标注格式为简单的文本文件(.txt),其中包含了对象类别的索引以及归一化的边界框坐标。然而,在实际应用中,尤其是当涉及到从其他数据源迁移数据时,可能会遇到基于XML格式的VOC风格标注文件。这些文件不仅记录了物体的位置信息,还可能附加有额外的元数据。 #### XMLYOLO格式换的关键点在于提取必要的字段并将其化为适合YOLO输入的形式: - **图像路径**:虽然不是严格意义上的“存储”,但在大多数情况下,`<filename>`标签内会指定对应的图片名称[^1]。 - **尺寸信息**:通过解析`<size>`节点下的子元素可以获取原图宽度(`width`)和高度(`height`)的信息,这对于后续计算归一化后的bbox参数至关重要。 - **目标区域描述**:每一个被标记的对象都会有一个独立的`<object>`条目,里面定义了类别名(class name)及其位置范围——即最小矩形包围盒(minimal bounding box) 的左上角(xmin, ymin) 和右下角 (xmax, ymax)。 为了实现上述过程,Python编程语言提供了多种库来简化操作流程,比如`xml.etree.ElementTree` 或者第三方模块 `lxml` 来加载、遍历DOM树结构;而像OpenCV这样的计算机视觉库则有助于读入关联的JPEG/PNG等类型的静态影像资料以便进一步预览或验证换成果。 下面给出一段示范性的脚本用于展示如何利用标准库完成基本的任务需求: ```python import xml.etree.ElementTree as ET from pathlib import Path def parse_voc_xml(xml_file_path): tree = ET.parse(str(Path(xml_file_path))) root = tree.getroot() image_info = {} # 获取文件名 filename = root.find('filename').text size = root.find('size') width = int(size.find('width').text) height = int(size.find('height').text) objects = [] for obj in root.findall('object'): label = obj.find('name').text bndbox = obj.find('bndbox') xmin = float(bndbox.find('xmin').text) ymin = float(bndbox.find('ymin').text) xmax = float(bndbox.find('xmax').text) ymax = float(bndbox.find('ymax').text) bbox_center_x = ((xmin + xmax)/2) / width bbox_center_y = ((ymin + ymax)/2) / height bbox_width = abs((xmax-xmin)) / width bbox_height = abs((ymax-ymin)) / height object_data = { "label": label, "bbox":[bbox_center_x,bbox_center_y,bbox_width,bbox_height] } objects.append(object_data) return {"file_name": filename,"image_size":{"w":width,"h":height},"objects":objects} ``` 此函数接收单个`.xml`文档作为输入,并返回一个字典形式的结果集合,其中包括原始图片的名字、大小规格以及所有识别出来的实体连同它们经过调整的比例值一起打包输出。
评论 7
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值