动态规划dp-洛谷B篇(普及题)

对动态规划有个初步的了解后,我们来做一些简单的题目
如洛谷的

P1926

直达原题
在这里插入图片描述

分析一下这道题目:

  • 核心思想 01背包
    直接给出状态转移公式

f [j] = max (f [j] , f [j-zuoye[i] ]+score [i]);

背包容量是时间,价值是作业分数和
要求分数>=及格分k后停止做作业,开始做题目

  • 更多地刷题
    先行对题目时间进行排序,从短到长即为最优解

  • 当然可以用dfs暴力求解,这里不详细展开

代码如下:

#include<iostream>
#include<cmath>
#include<cstring>
#include<algorithm>
using namespace std;
int main()
{
 int n,m,k,r;
 cin>>n>>m>>k>>r;
 int ti[11],zuoye[11],score[11],f[505]={0};
 for(int i=1;i<=n;i++){
 cin>>ti[i];
 }
 sort(ti+1,ti+n+1);//优先做时间短的 
 for(int i=1;i<=m;i++){
 cin>>zuoye[i];
 }
 for(int i=1;i<=m;i++){
 cin>>score[i];
 }
 for(int i=1;i<=m;i++){	
	for(int j=r;j>=zuoye[i];j--){	
	f[j]=max(f[j],f[j-zuoye[i]]+score[i]); //01背包 
        }
 }
 int t;
 for(int i=1;i<=r;i++){
 	if(f[i]>=k){ //如果已经及格
  	t=r-i; //总时间减去做作业时间
  	break;
 	}
 }
 int sum=0;
 for(int i=1;i<=n;i++){
 	if(t>=ti[i]){
  	t-=ti[i];
  	sum++;
 }
  else break;
 }
 cout<<sum<<endl;
 return 0;
}

P2800

直达原题
在这里插入图片描述

这道题相较于之前明显的背包问题有一定的难度
即状态转移公式较难把握
先看一下题目的要求,找出边界条件:

  • 塔底不需要时间 f[0]=0
  • 到达塔外时间,即题目所求 f[n+1]

方法1

根据题目所说一次可以飞1层或2层也可以爬1层
但是飞完只能爬
所以爬到第i层楼的方式:

  1. 从第i-1层飞到第i层
  2. 从第i-2层飞到第i层
  3. 从第i-1层爬到第i层

    这会出现连续飞的情况,是错误的,正解如下:

1.从第i-1层爬到第i层
2.从第i-2层飞到第i-1层,再爬到第i层(飞完必须爬)
3.从第i-3层飞到第i-1层,再爬到第i层(飞完必须爬)

所以到达最短时间即为三种方法中的最小值
也就找到了转移方程

f [i] = min { f [i−1] , f [i−2] , f [i−3] }+a [i]

代码如下:

#include<iostream>
using namespace std;
const int m=1e6+5;
int n;
int a[m],f[m];
int main()
{
 cin>>n;
 for(int i=1;i<=n;i++){
  cin>>a[i];
  f[i]=1e9;
 }
 f[n+1]=f[n];
 for(int i=1;i<=n+1;i++){
  f[i]=min(f[i],f[i-1]);
  f[i]=min(f[i],f[i-2]);
  f[i]=min(f[i],f[i-3]); 
  f[i]+=a[i];
 }
 cout<<f[n+1];
 return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值