对动态规划有个初步的了解后,我们来做一些简单的题目
如洛谷的
P1926
分析一下这道题目:
- 核心思想 01背包
直接给出状态转移公式
f [j] = max (f [j] , f [j-zuoye[i] ]+score [i]);
背包容量是时间,价值是作业分数和
要求分数>=及格分k后停止做作业,开始做题目
-
更多地刷题
先行对题目时间进行排序,从短到长即为最优解 -
当然可以用dfs暴力求解,这里不详细展开
代码如下:
#include<iostream>
#include<cmath>
#include<cstring>
#include<algorithm>
using namespace std;
int main()
{
int n,m,k,r;
cin>>n>>m>>k>>r;
int ti[11],zuoye[11],score[11],f[505]={0};
for(int i=1;i<=n;i++){
cin>>ti[i];
}
sort(ti+1,ti+n+1);//优先做时间短的
for(int i=1;i<=m;i++){
cin>>zuoye[i];
}
for(int i=1;i<=m;i++){
cin>>score[i];
}
for(int i=1;i<=m;i++){
for(int j=r;j>=zuoye[i];j--){
f[j]=max(f[j],f[j-zuoye[i]]+score[i]); //01背包
}
}
int t;
for(int i=1;i<=r;i++){
if(f[i]>=k){ //如果已经及格
t=r-i; //总时间减去做作业时间
break;
}
}
int sum=0;
for(int i=1;i<=n;i++){
if(t>=ti[i]){
t-=ti[i];
sum++;
}
else break;
}
cout<<sum<<endl;
return 0;
}
P2800
这道题相较于之前明显的背包问题有一定的难度
即状态转移公式较难把握
先看一下题目的要求,找出边界条件:
- 塔底不需要时间 f[0]=0
- 到达塔外时间,即题目所求 f[n+1]
方法1
根据题目所说一次可以飞1层或2层也可以爬1层
但是飞完只能爬
所以爬到第i层楼的方式:
从第i-1层飞到第i层从第i-2层飞到第i层从第i-1层爬到第i层
这会出现连续飞的情况,是错误的,正解如下:
1.从第i-1层爬到第i层
2.从第i-2层飞到第i-1层,再爬到第i层(飞完必须爬)
3.从第i-3层飞到第i-1层,再爬到第i层(飞完必须爬)
所以到达最短时间即为三种方法中的最小值
也就找到了转移方程
f [i] = min { f [i−1] , f [i−2] , f [i−3] }+a [i]
代码如下:
#include<iostream>
using namespace std;
const int m=1e6+5;
int n;
int a[m],f[m];
int main()
{
cin>>n;
for(int i=1;i<=n;i++){
cin>>a[i];
f[i]=1e9;
}
f[n+1]=f[n];
for(int i=1;i<=n+1;i++){
f[i]=min(f[i],f[i-1]);
f[i]=min(f[i],f[i-2]);
f[i]=min(f[i],f[i-3]);
f[i]+=a[i];
}
cout<<f[n+1];
return 0;
}