以下内容为本人原创
原文链接:https://blog.csdn.net/Yhen1/article/details/114035467
作者:@Yhen
发布网站:CSDN
未经本人同意禁止转载,如需转载请说明此出处,违者必究
最近买了本数据分析的书,打算跟着书上的内容学习Python数据分析。
但学了又容易忘记,所以就打算写成博文分享出来同时也当做笔记了
(本文所有文字及表格为纯手打,创作不易,可否点赞支持一哈?)
本博客会收录入本人专栏“Yhen数据分析笔记”
本文是第一篇
首先学习的是Python数据分析的三剑客之一的Pandas
文章目录
一.Pandas概述
Pandas是数据分析的三剑客之一,是python的核心数据分析库,他提供了快速灵活的数据结构,能够简单,直观,快速的处理各种类型的数据。
1.Pandas能够处理以下类型的数据:
- 与SQL或Excel类似的数据
- 有序和无序(非固定频率)的时间序列数据
- 带行列标签的矩阵数据
- 任何其他形式的观测,统计数据集
2.Pandas的功能很多,他的优势如下:
- 处理浮点与非浮点数据里面的缺失数据,表示为NAN.
- 大小可变,例如插入或者删除DataFrame等多为对象的列
- 自动,显式数据对齐,显式的将对象与一组标签对齐,也可以忽略标签,在Series,DataFrame计算时自动与数据对齐
- 强大,灵活的分组统计(groupby)功能,即数据聚合,数据转换。
- 可以把Python和Numpy中不规则,不同索引的数据轻松的转换成DataFrame对象.
- 直观的合并(merge),连接(join)数据集.
- 灵活的重塑(reshape),透视(pivot)数据集
- 成熟的导入导出工具,导入文本文件(CSV等支持分隔符的文件),Excel文件,数据库等数据;导出Excel文件,文本文件等,利用超快的HDF5格式保存或加载数据.
- 支持日期范围生成,频率转换,移动窗口统计,移动窗口线性回归,日期位移等时间序列功能.
二.Pandas的安装
直接用pip安装即可
pip install pandas
三.Pandas使用实例
1.Series对象
Series是Python的Pandas库中的一种数据结构,它类似一维数组,由一组数据以及这组数据相关的标签组成,或者仅有一组数据而没有索引也可以创建一个简单的Series对象,Series可以储存整数,浮点数,字符串,Python对象等多种类型的数据。
①创建Series对象
s=pd.Series(data,index=index)
参数说明:
- data:表示数据,支持Python字典,多维数组,标量值.
- index:表示行标签
- 返回值:Series对象
实例:
import pandas as pd
s=pd.Series([80,60,75])
print(s)
运行结果:
默认的行索引是0 1 2
也可以
②手动设置索引
import pandas as pd
s1=pd.Series