L1,L2正则化

L1,L2正则化

正则化项即罚函数,该项对模型向量进行“惩罚”,从而避免单纯最小二乘问题的过拟合问题。训练的目的是最小化目标函数,则C越小,意味着惩罚越小,分类间隔也就越小,分类错误也就越少。【此处存疑,见评论】
正则化项本质上是一种先验信息,整个最优化问题从贝叶斯观点来看是一种贝叶斯最大后验估计,其中正则化项对应后验估计中的先验信息,损失函数对应后验估计中的似然函数,两者的乘积即对应贝叶斯最大后验估计的形式,如果你将这个贝叶斯最大后验估计的形式取对数,即进行极大似然估计,你就会发现问题立马变成了损失函数+正则化项的最优化问题形式。
(1) 避免出现过拟合(over-fitting)。经验风险最小化 + 正则化项 = 结构风险最小化。
(2) 从模型求解上看,正则化提供了一种唯一解的可能。光用最小二乘拟合可能出现无数组解,加个L1或L2正则化项能有唯一解。
L1范数是指向量中各个元素绝对值之和,用于特征选择; 
L2范数 是指向量各元素的平方和然后求平方根,用于 防止过拟合,提升模型的泛化能力
L1与L2区别:使用L1可以得到稀疏的权值;用L2可以得到平滑的权值
L1 regularization(往0方向靠)
有什么用呢
  • L1正则化可以产生稀疏权值矩阵,即产生一个稀疏模型,可以用于特征选择
  • L2正则化可以防止模型过拟合(overfitting);一定程度上,L1也可以防止过拟合
针对上面的说到的作用  L1: 产生一个稀疏模型,可以用于特征选择 ,下面来解释一下:
  1. 为什么要生成一个稀疏矩阵?
  2. 为什么L1正则化可以产生稀疏矩阵(L1是怎么让系数等于0的)
稀疏模型与特征选择
上面提到L1正则化有助于生成一个稀疏权值矩阵,进而可以用于特征选择。为什么要生成一个稀疏矩阵?
稀疏矩阵指的是很多元素为0,只有少数元素是非零值的矩阵,即得到的线性回归模型的大部分系数都是0。 
通常机器学习中特征数量很多,例如文本处理时,如果将一个词组(term)作为一个特征,那么特征数量会达到上万个(bigram)。在预测或分类时,那么多特征显然难以选择,但是如果代入这些特征得到的模型是一个稀疏模型,表示只有少数特征对这个模型有贡献,绝大部分特征是没有贡献的,或者贡献微小(因为它们前面的系数是0或者是很小的值,即使去掉对模型也没有什么影响),此时我们就可以只关注系数是非零值的特征。这就是稀疏模型与特征选择的关系。
从另一个角度来讲,为防止过拟合,我们考虑 W=(w 0 ,w 1 ,w 2 ,w 3 ,...w N ) 中的项的个数最小化。 
一句话,向量中0元素,对应的x样本中的项我们是不需要考虑的,可以砍掉。因为 0∗x i 没有啥意义,说明 x i  项没有任何权重。这也是正则项防止过拟合的一个原因。这里顺便解释一个L2比较好的原因:
L2范数是指向量各元素的平方和然后求平方根。我们让L2范数的正则项 ||W|| 2 最小,可以使得W的每个元素都很小,都接近于0,但与L1范数不同,它不会让它等于0,而是接近于0,这里是有很大的区别的哦;所以大家比起1范数,更钟爱2范数。

L1能产生等于0的权值,即能够剔除某些特征在模型中的作用(特征选择),即产生稀疏的效果。 

L2正则化可以防止模型过拟合(overfitting)
其实按照上面所说已经差不多可以理解为什么可以防止过拟合了,就是在拟合过程中通常都倾向于让权值尽可能小,最后构建一个所有参数都比较小的模型。因为一般认为参数值小的模型比较简单,能适应不同的数据集,一定程度上避免了过拟合现象
可以设想一下对于一个线性回归方程,若参数很大,那么只要数据偏移一点点,就会对结果造成很大的影响;但如果参数足够小,数据偏移得多一点也不会对结果造成什么影响,专业一点的说法是『抗扰动能力强』。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值